Journal of Ornithology

, Volume 158, Issue 1, pp 277–286 | Cite as

Foraging habitat selection by Alpine White-winged Snowfinches Montifringilla nivalis during the nestling rearing period

  • Mattia Brambilla
  • Matteo Cortesi
  • Federico Capelli
  • Dan Chamberlain
  • Paolo Pedrini
  • Diego Rubolini
Original Article

Abstract

High-elevation species are expected to be vulnerable to climate warming and to experience dramatic range contractions in the coming decades. Indeed, climate change in high-altitude biota has proceeded at a faster pace compared to lowlands. Understanding basic ecological features of mountain species, such as their foraging ecology, may be useful to further our understanding of the mechanisms dictating species distributions and their responses to global warming, ultimately improving conservation strategies. In this study, we investigated foraging habitat selection of the poorly studied Alpine White-Winged Snowfinch Montifringilla nivalis during the nestling rearing period (June–July) in the Italian Alps. Pair members from 18 different nests were visually followed for 1 day or until we obtained 10 foraging locations. At foraging and control plots (equal numbers per breeding pair; control plots within 300 m of the nest, the average exploited radius according to literature) we recorded habitat variables (habitat types/heterogeneity, sward height, slope, solar radiation). We built models of foraging habitat selection and evaluated whether the selection of climate-related variables varied with temperature and season progression. Snowfinches preferred to forage at colder (low solar radiation) sites, with snow patches and short grasses, some boulders and bare ground, and shifted towards sites with increasingly lower solar radiation after the first week of July. Snow patches are likely to provide both arthropod fallout and suitable sites for invertebrates at their melting margins. Short herbaceous layers likely improved invertebrate detectability in addition to their abundance. These results suggested that climate change may impact on the foraging ecology of this species: warming may reduce the availability of snow patches and favor a denser and taller sward, and may reduce the time frame within which melting snow patches are highly profitable. Hence, the fine-scale habitat requirements of foraging Snowfinches highlight the species’ potential high sensitivity to anthropogenic climate warming.

Keywords

Alps Breeding birds Climate change Grassland Passeriformes Snow cover 

Zusammenfassung

Futterhabitatwahl bei Schneefinken während der Nestlingsaufzucht Es ist zu erwarten, dass Arten der Hochlagen anfällig sind gegenüber Klimaerwärmung, und dass sie in den kommenden Jahrzehnten eine dramatische Verkleinerung ihres Lebensraumes erfahren. In der Tat ist der Klimawandel in hochgelegenen Biota schneller fortgeschritten als in niedriger gelegenen Gebieten. Das Verständnis grundlegender ökologischer Merkmale von Gebirgs-Arten, wie ihre Futtersuche, könnte nützlich sein, um unser Verständnis für die Mechanismen zu erweitern, die die Verbreitung einer Art und ihre Reaktion auf globale Erwärmung bedingen, um schließlich die Strategien im Artenschutz zu verbessern. In dieser Studie untersuchten wir die Auswahl von Futterhabitaten beim wenig erforschten Schneefinken (Montifringilla nivalis) in den italienischen Alpen während der Zeit der Nestlingsaufzucht (Juni-Juli). Die Individuen der Paare aus 18 verschiedenen Nestern wurden über einen Tag, oder bis wir 10 Futterplätze aufgenommen hatten, verfolgt. An Futter- und Kontrollplätzen (gleiche Anzahl bei Brutpaaren; Kontrollplätze innerhalb von 300 m vom Nest, laut Literatur der mittlere ausgenutzte Radius) nahmen wir Habitat-Variablen auf (Habitattyp/-heterogenität, Höhe der Grasnarbe, Neigung, Sonneneinstrahlung). Wir erstellten Modelle für eine Futterhabitat-Auswahl und überprüften, ob sich die Auswahl von klimabezogenen Variablen mit der Temperatur und fortschreitender Saison änderte. Schneefinken zogen es vor, an kälteren Stellen (geringere Sonneneinstrahlung) mit Schneeflecken und kurzem Gras, einigen Steinen und offenem Boden auf Futtersuche zu gehen, und wechselten nach der ersten Juli-Woche an Stellen mit zunehmend geringerer Sonneneinstrahlung. Schneeflecken stellen vermutlich sowohl Arthropoden-Fallout zur Verfügung als auch geeignete Stellen für Invertebraten an ihren Rändern. Kurze krautige Bewüchse erleichterten das Auffinden der Invertebraten und vergrößerten deren Abundanz. Diese Ergebnisse legen nahe, dass der Klimawandel einen Einfluss haben könnte auf die Futtersuche dieser Art: eine Erwärmung könnte die Verfügbarkeit von Schneeflecken reduzieren und eine dichtere und höhere Grasnarbe bevorzugen, und sie könnte das Zeitfenster verkleinern, in der schmelzende Schneeflächen hochprofitabel sind. Daher betonen die kleinräumigen Bedürfnisse von Schneefinken an ihr Futterhabitat die potentiell hohe Empfindlichkeit dieser Art gegenüber anthropogener Klimaerwärmung.

References

  1. Antor RJ (1995) The importance of arthropod fallout on snow patches for the foraging of high-alpine birds. J Avian Biol 26:81–85Google Scholar
  2. Arlettaz R, Maurer ML, Mosimann-Kampe P, Nusslé S, Abadi F, Braunisch V, Schaub M (2012) New vineyard cultivation practices create patchy ground vegetation, favouring Woodlarks. J Ornithol 153:229–238CrossRefGoogle Scholar
  3. BirdLife International (2015) European red list of birds. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  4. Brambilla M, Fulco E, Gustin M, Celada C (2013) Habitat preferences of the threatened Black-eared Wheatear Oenanthe hispanica in southern Italy. Bird Study 60:432–435CrossRefGoogle Scholar
  5. Brambilla M, Bergero V, Bassi E, Falco R (2015) Current and future effectiveness of Natura 2000 network in the central Alps for the conservation of mountain forest owl species in a warming climate. Eur J Wildl Res 61:35–44CrossRefGoogle Scholar
  6. Brambilla M, Gustin M, Vitulano S, Negri I, Celada C (2016a) A territory scale analysis of habitat preferences of the declining Ortolan Bunting Emberiza hortulana. Bird Study 63:52–57CrossRefGoogle Scholar
  7. Brambilla M, Pedrini P, Rolando A, Chamberlain DE (2016b) Climate change will increase the potential conflict between skiing and high-elevation bird species in the Alps. J Biogeogr. doi:10.1111/jbi.12796 Google Scholar
  8. Braunisch V, Coppes J, Arlettaz R, Suchant R, Zellweger F, Bollmann K (2014) Temperate mountain forest biodiversity under climate change: compensating negative effects by increasing structural complexity. PLoS One 9(5):e97718CrossRefPubMedPubMedCentralGoogle Scholar
  9. Catzeflis F (1975) Remarques sur la nidification rupestre de la Niverolle. Nos Oiseaux 33:64–65Google Scholar
  10. Chamberlain D, Arlettaz R, Caprio E, Maggini R, Pedrini P, Rolando A, Zbinden N (2012) The altitudinal frontier in avian climate change research. Ibis 154:205–209CrossRefGoogle Scholar
  11. Chamberlain DE, Negro M, Caprio E, Rolando A (2013) Assessing the sensitivity of alpine birds to potential future changes in habitat and climate to inform management strategies. Biol Conserv 167:127–135CrossRefGoogle Scholar
  12. Chamberlain D, Brambilla M, Caprio E, Pedrini P, Rolando A (2016a) Alpine bird distributions along elevation gradients: the consistency of climate and habitat effects across geographic regions. Oecologia 181:1139–1150CrossRefPubMedGoogle Scholar
  13. Chamberlain DE, Pedrini P, Brambilla M, Rolando A, Girardello M (2016b) Identifying key conservation threats to Alpine birds through expert knowledge. Peer J 4:e1723CrossRefPubMedPubMedCentralGoogle Scholar
  14. Charmantier A, Gienapp P (2014) Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evol Appl 7:15–28CrossRefPubMedGoogle Scholar
  15. Cramp S, Perrins CM (eds) (1994) The birds of the Western Palearctic, vol VIII. Oxford University Press, OxfordGoogle Scholar
  16. Dirnböck T, Essl F, Babitsch W (2011) Disproportional risk for habitat loss of high-altitude endemic species under climate change. Global Change Biol 17:990–996CrossRefGoogle Scholar
  17. Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67CrossRefGoogle Scholar
  18. Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M (2014) 21st century climate change in the European Alps—a review. Sci Tot Environ 493:1138–1151CrossRefGoogle Scholar
  19. Grangé J-L (2008) Biologie de reproduction de la Niverolle Alpine Montifringilla nivalis dans le Pyrénées occidentales. Nos Oiseaux 55:67–82Google Scholar
  20. Hosmer DW, Lemeshow S (1989) Applied logistic regression. Wiley, New YorkGoogle Scholar
  21. Inouye DW, Barr B, Armitage KB, Inouye BD (2000) Climate change is affecting altitudinal migrants and declining species. PNAS 97:1630–1633CrossRefPubMedPubMedCentralGoogle Scholar
  22. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF et al (eds) Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–14Google Scholar
  23. Jedlikowski J, Brambilla M, Suska-Malawska M (2014) Fine-scale selection of nesting habitat in Little Crake Porzana parva and Water Rail Rallus aquaticus in small ponds. Bird Study 61:171–181CrossRefGoogle Scholar
  24. Leathwick JR, Rowe D, Richardson J, Elith J, Hastie T (2005) Using multivariate adaptive regression splines to predict the distributions of New Zealand’s freshwater diadromous fish. Freshw Biol 50:2034–2052CrossRefGoogle Scholar
  25. Lu X, Ke DH, Zeng XH, Yu TL (2009) Reproductive ecology of two sympatric Tibetan snowfinch species at the edge of their altitudinal range: response to more stressful environments. J Arid Environ 73:1103–1108CrossRefGoogle Scholar
  26. Maggini R, Lehmann A, Zbinden N, Zimmermann NE, Bolliger J, Schröder B, Foppen R, Schmid H, Beniston M, Jenni L (2014) Assessing species vulnerability to climate and land use change: the case of the Swiss breeding birds. Divers Distrib 20:708–719CrossRefGoogle Scholar
  27. Milborrow S (2011a) Earth: multivariate adaptive regression spline models. R package version 4.4.3. http://cran.r-project.org/web/packages/earth. Accessed 1 Dec 2015
  28. Milborrow S (2011b) Plotmo: plot a model’s response while varying the values of the predictors. R package 3.1.4. http://cran.r-project.org/web/packages/plotmo. Accessed 1 Dec 2015
  29. Muscio G, Pellegrini GB, Solari M, Tomaselli M, Vanin S, Zanetti A (2005) Ambienti nivali. La vita in un ambiente estremo. Quaderni Habitat N. 10. Ministero dell’Ambiente e della Tutela del Territorio, Museo Friulano di Storia Naturale, Comune di UdineGoogle Scholar
  30. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  31. Rosvold J (2016) Perennial ice and snow-covered land as important ecosystems for birds and mammals. J Biogeogr 43:3–12CrossRefGoogle Scholar
  32. Sekercioglu CH, Schneider SH, Fay JP, Loarie SR (2008) Climate change, elevational range shifts and bird extinctions. Conserv Biol 22:140–150CrossRefPubMedGoogle Scholar
  33. Strinella E, Ricci F, Vianale P (2007) Uso dell’habitat nel Fringuello alpino (Montifringilla nivalis) in periodo riproduttivo in un’area sub-antropizzata: Campo Imperatore (Gran Sasso-Abruzzo). Alula 14:107–114Google Scholar
  34. Strinella E, Vianale P, Pirrello S, Artese C (2011) Biologia riproduttiva del Fringuello alpino Montifringilla nivalis a Campo Imperatore nel Parco Nazionale del Gran Sasso e Monti della Laga (AQ). Alula 18:95–100Google Scholar
  35. Tarquini S, Vinci S, Favalli M, Doumaz F, Fornaciai A, Nannipieri L (2012) Release of a 10-m-resolution DEM for the Italian territory: comparison with global-coverage DEMs and anaglyph-mode exploration via the web. Comput Geosci 38:168–170CrossRefGoogle Scholar
  36. Vickery J, Arlettaz R (2012) The importance of habitat heterogeneity at multiple scales for birds in European agricultural landscapes. In: Fuller RJ (ed) Birds and habitat. Relationships in changing landscapes. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2016

Authors and Affiliations

  • Mattia Brambilla
    • 1
    • 2
  • Matteo Cortesi
    • 3
  • Federico Capelli
    • 3
  • Dan Chamberlain
    • 4
  • Paolo Pedrini
    • 1
  • Diego Rubolini
    • 3
  1. 1.Sezione Zoologia dei VertebratiMuseo delle ScienzeTrentoItaly
  2. 2.Settore Biodiversità e Aree protetteFondazione Lombardia per l’AmbienteSevesoItaly
  3. 3.Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
  4. 4.Dipartimento di Scienze della Vita e Biologia dei SistemiUniversità di TorinoTurinItaly

Personalised recommendations