Skip to main content

Integrating morphology, phylogeography, and ecological niche modeling to explore population differentiation in North African Common Chaffinches

Abstract

Diagnosing distinct evolutionary taxa requires careful assessment of genetic, morphological, ecological, and behavioral variation within and among populations. In this study, data on phenotype (mensural and plumage coloration), genotype (mitochondrial DNA control-region sequences), and distributional projections derived from ecological niche models, were used to investigate population differentiation of North African Common Chaffinches. Results showed substantial genetic variation among populations, mostly (~56 %) distributed between Libyan populations and other North African populations, rather than within populations. Isolation-by-distance analysis indicated severely restricted gene flow between populations. Historical demographic analyses indicate that population expansion began before the Last Glacial Maximum, which is consistent with ecological niche model paleoprojections; interestingly, differentiation of the Libyan population (Fringilla coelebs harterti) apparently did not take place under the last glacial conditions. Hence, although its taxonomic status must await robust testing using multilocus DNA data, this population is an important element in the conservation of bird diversity in North Africa.

Zusammenfassung

Integration von Morphologie, Phylogeographie und ökologischen Nischenmodellen zur Untersuchung der Populationsdifferenzierung nordafrikanischer Buchfinken Das eindeutige Diagnostizieren evolutionärer Taxa erfordert eine sorgfältige Bewertung von Variation in Genetik, Morphologie, Ökologie und Verhalten innerhalb und zwischen Populationen. In dieser Studie haben wir Daten zum Phänotyp (Messdaten und Gefiederfärbung) und Genotyp (Sequenzen von Kontrollregionen mitochondrialer DNA) sowie aus ökologischen Nischenmodellen abgeleitete Verbreitungsprojektionen verwendet, um die Populationsdifferenzierung nordafrikanischer Buchfinken zu untersuchen. Die Ergebnisse zeigten beträchtliche genetische Variation zwischen Populationen, hauptsächlich (~56 %) zwischen libyschen und anderen nordafrikanischen Populationen, jedoch nicht so sehr innerhalb von Populationen. Eine „Isolation durch Distanz“-Analyse wies auf einen stark eingeschränkten Genfluss zwischen Populationen hin. Analysen der historischen Demographie deuten darauf hin, dass die Populationsausdehnung vor dem letzteiszeitlichen Maximum begann, was mit Paläoprojektionen ökologischer Nischenmodelle übereinstimmt. Interessanterweise erfolgte die Differenzierung der libyschen Population offenbar nicht während des letzteiszeitlichen Maximums. Daher ist diese Population wichtig für den Schutz der Vogeldiversität in Nordafrika, obwohl ihr taxonomischer Status noch mit Hilfe von Multilocus-DNA-Daten bestätigt werden muss.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Amadon D (1949) The seventy-five per cent rule for subspecies. Condor 51:250–258

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Ball RM, Avise JC (1992) Mitochondrial DNA phylogeographic differentiation among avian populations and the evolutionary significance of subspecies. Auk 109:626–636

    Google Scholar 

  • Bookstein F (1989) ‘Size and shape’: a comment on semantics. Syst Zool 38:173–180

    Article  Google Scholar 

  • Brito P (2005) The influence of Pleistocene glacial refugia on tawny owl genetic diversity and phylogeography in western Europe. Mol Ecol 14:3077–3094

    Article  CAS  PubMed  Google Scholar 

  • Brown JL (2014) SDMtoolbox: a python-based toolkit for landscape genetic, biogeography, and species distribution model analyses. Methods Ecol Evol 5:694–700

    Article  Google Scholar 

  • Clement P, Harris A, Davis J (1999) Finches and sparrows. Helm, London

    Google Scholar 

  • Cramp S, Perrins CM (1994) Handbook of the birds of Europe, the Middle East and North Africa: the birds of western Palearctic, vol VIII. Crows to finches. Oxford University Press, Oxford, New York, p 899

  • del Hoyo J, Elliott A, Christie D (2010) Handbook of the birds of the world, vol. 15. Weavers to New World Warblers. Lynx, Barcelona

    Google Scholar 

  • Drovetski SV (2003) Plio-Pleistocene climatic oscillations, Holarctic biogeography and speciation in an avian subfamily. J Biogeogr 30:1173–1181

    Article  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ersts PJ (2009) Geographic distance matrix generator (version 1.2.3). American Museum of Natural History, Center for Biodiversity and Conservation. http://biodiversityinformatics.amnh.org/open_source/gdmg. Accessed 1 Dec 2015

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Syst 34:397–423

    Article  Google Scholar 

  • Gill FB, Mostrom AM, Mack AL (1993) Speciation in North American chickadees. 1. Patterns of mtDNA genetic divergence. Evolution 47:195–212

    Article  CAS  Google Scholar 

  • Grant PR (1979) Evolution of the Chaffinch, Fringilla coelebs, on the Atlantic Islands. Biol J Linn Soc 11:301–332

    Article  Google Scholar 

  • Griswold CK, Baker AJ (2002) Time to the most recent common ancestor and divergence times of populations of Common Chaffinches (Fringilla coelebs) in Europe and North Africa: insights into Pleistocene refugia and current levels of migration. Evolution 56:143–153

    Article  CAS  PubMed  Google Scholar 

  • Guillaumet A, Pons JM, Godelle B, Crochet PA (2006) History of the Crested Lark in the Mediterranean region as revealed by mtDNA sequences and morphology. Mol Phylogenet Evol 39:645–656

    Article  CAS  PubMed  Google Scholar 

  • Heled J, Drummond AJ (2012) Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Syst Biol 61:138–149

    Article  PubMed  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Hijmans RJ, Cameron S, Parra J, Jones P, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hogner S, Laskemoen T, Lifjeld JT, Porkert J, Kleven O, Albayrak T, Kabasakal B, Johnsen A (2012) Deep sympatric mitochondrial divergence without reproductive isolation in the Common Redstart Phoenicurus phoenicurus. Ecol Evol 2:2974–2988

    Article  PubMed  PubMed Central  Google Scholar 

  • Jonsson L (1992) Birds of Europe with North Africa and the Middle East. Black, London

    Google Scholar 

  • Joseph L, Omland KE (2009) Phylogeography: its development and impact in Australo-Papuan ornithology with special reference to paraphyly in Australian birds. Emu 109:1–23

    Article  Google Scholar 

  • Lachlan RF, Verzijden MN, Bernard CS, Jonker PP, Koese B, Jaarsma S, Spoor W, Slater PJB, ten Cate C (2013) The progressive loss of syntactical structure in bird song along an island colonization chain. Curr Biol 23:1896–1901

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lynch A, Baker AJ (1994) A population memetics approach to cultural evolution in Chaffinch song: differentiation among populations. Evolution 48:351–359

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Marshall HD, Baker AJ (1997) Structural conservation and variation in the mitochondrial control region of Fringilline finches (Fringilla spp.) and the Greenfinch (Carduelis chloris). Mol Biol Evol 14:173–184

    Article  CAS  PubMed  Google Scholar 

  • Marshall HD, Baker AJ (1999) Colonization history of Atlantic island Common Chaffinches (Fringilla coelebs) revealed by mitochondrial DNA. Mol Phylogenet Evol 11:201–212

    Article  CAS  PubMed  Google Scholar 

  • McKay B, Zink R (2010) The causes of mitochondrial gene tree paraphyly in birds. Mol Phylogenet Evol 54:647–650

    Article  PubMed  Google Scholar 

  • Minh BQ, Nguyen MA, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30:1188–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlova A, Rohwer S, Drovetski SV, Zink RM (2006) Different post-Pleistocene histories of Eurasian parids. J Hered 97:389–402

    Article  CAS  PubMed  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  • Pereira SL, Baker AJ (2006) A molecular timescale for galliform birds accounting for uncertainty in time estimates and heterogeneity of rates of DNA substitutions across lineages and sites. Mol Phylogenet Evol 38:499–509

    Article  CAS  PubMed  Google Scholar 

  • Perktaş U (2011) Ecogeographical variation of body size in Chaffinches Fringilla coelebs. Bird Study 58:264–277

    Article  Google Scholar 

  • Perktaş U, Gosler AG (2010) Measurement error revisited: its importance and evaluation of size and shape. Acta Ornithol 45:161–172

    Article  Google Scholar 

  • Perktaş U, Quintero E (2013) A wide geographical survey of mitochondrial DNA variation in the Great Spotted Woodpecker complex, Dendrocopos major (Aves: Picidae). Biol J Linn Soc 108:173–188

    Article  Google Scholar 

  • Perktas U, Barrowclough GF, Groth JG (2011) Phylogeography and species limits in the Green Woodpecker complex (Aves: Picidae): multiple Pleistocene refugia and range expansion across Europe and the Near East. Biol J Linn Soc 104:710–723

    Article  Google Scholar 

  • Perktaş U, Gür H, Sağlam İK, Quintero E (2015) Climate-driven range shifts and demographic events over the history of Kruper’s Nuthatch Sitta krueperi. Bird Study 62:14–28

    Article  Google Scholar 

  • Peterson AT, Cohoon KC (1999) Sensitivity of distributional prediction algorithms to geographic data completeness. Ecol Model 117:159–164

    Article  Google Scholar 

  • Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modelling. Ecol Model 213:63–72

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Planas E, Saupe EE, Lima-Ribeiro MS, Peterson AT, Ribera C (2014) Ecological niche and phylogeography elucidate complex biogeographic patterns in Loxosceles rufescens (Araneae, Sicariidae) in the Mediterranean Basin. BMC Evol Biol 14:195

    Article  PubMed  PubMed Central  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Raxworthy CJ, Ingram CM, Rabibisoa N, Pearson RG (2007) Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Syst Biol 56:1–17

    Article  Google Scholar 

  • Rising JD, Somers KM (1989) The measurement of overall body size in birds. Auk 106:666–674

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sağlam İK, Küçükyıldırım S, Çağlar SS (2014) Diversification of montane species via elevation shifts: the case of the Kaçkar cricket Phonochorion (Orthoptera). J Zool Syst Evol Res 52:177–189

    Article  Google Scholar 

  • Samarasin-Dissanayake P (2010) Population differentiation, historical demography and evolutionary relationships among widespread Common Chaffinch populations (Fringilla coelebs ssp.). Dissertation, University of Toronto

  • Smithe FB (1974) Naturalist’s color guide. Part I. Color guide. American Museum of Natural History, New York

    Google Scholar 

  • Stervander M, Illera JC, Kvist L, Barbosa P, Keehnen NP, Pruisscher P, Bensch S, Hansson B (2015) Disentangling the complex evolutionary history of the western Palearctic Blue Tits (Cyanistes spp.)—phylogenomic analyses suggest radiation by multiple colonization events and subsequent isolation. Mol Ecol 24:2477–2494

    Article  CAS  PubMed  Google Scholar 

  • Suárez NM, Betancor E, Klassert TE, Almeida T, Hernandez M, Pestano JJ (2009) Phylogeography and genetic structure of the Canarian Common Chaffinch (Fringilla coelebs) inferred with mtDNA and microsatellite loci. Mol Phylogenet Evol 53:556–564

    Article  PubMed  Google Scholar 

  • Svensson L (2015) A new North African subspecies of Common Chaffinch Fringilla coelebs. Bull Br Orn Club 135:69–76

    Google Scholar 

  • Svensson L, Mullarney K, Zetterström D (2009) Collins bird guide, 2nd edn. Harper Collins, London

    Google Scholar 

  • Swofford DL (2001) PAUP: phylogenetic analysis using parsimony (and other methods), version 4.0b10. Sinauer, Sunderland

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thévenot M, Vernon JDR, Bergier P (2003) The birds of Morocco: an annotated checklist. BOU Checklist 20. British Ornithologists’ Union and British Ornithologists’ Club, Tring

  • Tocchio LJ, Gurgel-Gonçalves R, Escobar LE, Peterson AT (2014) Niche similarities among white-eared opossums (Mammalia, Didelphidae): is ecological niche modelling relevant to setting species limits? Zool Scr 44:1–10

    Article  Google Scholar 

  • van den Berg AB (2005) The sound approach 2005. Field identification of Maghreb Chaffinches. Dutch Bird 27:295–301

    Google Scholar 

  • Vázquez-Miranda H, Navarro-Sigüenza AG, Omland KE (2009) Phylogeography of the Rufous-naped Wren (Campylorhynchus rufinucha): speciation and hybridization in Mesoamerica. Auk 126:765–778

    Article  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883

    Article  PubMed  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611

    Article  Google Scholar 

  • Weir JT, Schluter D (2008) Calibrating the avian molecular clock. Mol Ecol 17:2321–2328

    Article  CAS  PubMed  Google Scholar 

  • Wiley EO (1981) The theory and practice of phylogenetic systematics. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

We are grateful to colleagues who provided skin samples from critical specimens used in this research: George Barrowclough, Paul Sweet and Peter Capainolo (American Museum of Natural History). We are thankful to Jeff Groth for primer design and his valuable comments on this study. We extend our special thanks to Brett Benz, Lukas Musher, all three anonymous reviewers and Jan T. Lifjeld for important comments on this study; and Stephen Thurston for preparing Fig. 1. We thank Peter R. Grant for morphometric data of North African Common Chaffinches and his critical comments on this study. Occurrence data were kindly provided by the American Museum of Natural History, the Aranzadi Science Society, Artenfinder Rheinland-Pfalz, Biologiezentrum Linz Oberoesterreich, the California Academy of Sciences, the Center for Macroecology, Evolution and Climate, the University of Copenhagen, Cornell Lab of Ornithology (eBird Observation Dataset), the Danish Ornithological Society, the European Molecular Biology Laboratory, the Field Museum of Natural History, the Finnish Museum of Natural History, iNaturalist, the Musée national d’histoire naturelle, Paris, the Musée national d’histoire naturelle Luxembourg, the Museum and Institute of Zoology, Polish Academy of Sciences, the Museum für Naturkunde Berlin, the Museum of Comparative Zoology, Harvard University, the National Museum of Natural History, the Smithsonian Institution, Naturgucker, the Natural History Museum, the Natural History Museum, the University of Oslo, the Natural History Museum, University of Tartu, Naturalis National Natural History Museum, the Norwegian Species Observation Service, Norwegian Biodiversity Information Centre, the Research Institute for Nature and Forest, the Royal Belgian Institute of Natural Sciences, the Royal Ontario Museum, the Sierra Nevada Global Change Observatory, the Andalusian Environmental Center, University of Granada, Regional Government of Andalusia, the University of Alaska Museum of the North, the University of Gdańsk, the Bird Migration Research Station, the University of Washington Burke Museum, the University Museum of Zoology Cambridge, the Western Foundation of Vertebrate Zoology, the Wiltshire and Swindon Biological Records Centre, Yale University Peabody Museum, and the Zoological Museum Amsterdam, University of Amsterdam. Research funding for Utku Perktaş was provided by Hacettepe University and a Collection Study Grant in the American Museum of Natural History (F. M. Chapman Memorial Fund). Financial support was also provided by the L. C. Sanford Fund, the L. J. Sanford Trust, the Sackler Institute for Comparative Genomics and the Cullman Program for Molecular Systematics at the American Museum of Natural History.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utku Perktaş.

Additional information

Communicated by J. T. Lifjeld.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10336_2016_1361_MOESM1_ESM.tif

Supplementary material 1. Summary of sampling locations for morphological measurements. The ranges of the generally recognized subspecies are shown in various colors. The average and SD of each morphologic character are shown for each subspecies (TIFF 3337 kb)

Supplementary material 2. Summary of haplotypes detected as part of this study (DOCX 99 kb)

10336_2016_1361_MOESM3_ESM.eps

Supplementary material 3. Phylogram summarizing results of maximum-parsimony analyses for North African Common Chaffinches for mtDNA control region sequences based on 23 haplotypes. Numbers indicate mutational step differences (EPS 969 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perktaş, U., Peterson, A.T. & Dyer, D. Integrating morphology, phylogeography, and ecological niche modeling to explore population differentiation in North African Common Chaffinches. J Ornithol 158, 1–13 (2017). https://doi.org/10.1007/s10336-016-1361-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-016-1361-3

Keywords

  • Population genetics
  • Isolation by distance
  • Mitochondrial DNA
  • Maghreb
  • Fringilla coelebs
  • Fringilla coelebs harterti