Journal of Ornithology

, Volume 157, Issue 4, pp 1087–1101 | Cite as

Postglacial colonisation and diversification of the Jungle Crow (Corvus macrorhynchos) in its north-eastern frontier as revealed by morphological analysis

  • Sumio Nakamura
  • Alexey Kryukov
Original Article


The Jungle Crow (Corvus macrorhynchos) is a widespread species in Asia that underwent remarkable postglacial recolonisations during the Pleistocene and Holocene. In order to better understand the pattern of its settling and diversification, we investigated the morphological differences among adult Jungle Crow samples obtained from locations in northern Japan and the Russian Far East: Hokkaido, Sakhalin Island, the continental seaboard adjacent to the Tatarsky Strait and the region to the west of the Sikhote-Alin Mountains. We studied four cranial measurements and five bill measurements, as well as body mass from 195 samples. We found clear differences among most populations for both males and females when the various characteristics were observed, especially on Hokkaido and Sakhalin Island; crows from Hokkaido had larger bills and lighter body mass. The differences between the Hokkaido and Sakhalin populations correspond to Bergman’s and Allen’s rules, but this was not the case with the longitudinal cline revealed among the three populations from the Russian Far East. In conclusion, our results suggest that La Pérouse Strait separates two assumed recolonisation movements, the first being along the mainland via Ussuriland to Sakhalin and the second along the Japanese Archipelago to Hokkaido. It is evident that this strait is a more effective barrier between Jungle Crow populations than either the Tatarsky Strait or the Sikhote-Alin mountain range.


Jungle Crow Corvus macrorhynchos Diversification East Asia Skull morphology Recolonisation 


Nacheiszeitliche Besiedlung und Diversifizierung bei der Dickschnabelkrähe ( Corvus macrorhynchos ) an ihrer nordöstlichen Verbreitungsgrenze: Ergebnisse morphologischer Analysen Die Dickschnabelkrähe (Corvus macrorhynchos) ist eine in Asien weitverbreitete Art, die während des Pleistozäns und Holozäns eine bemerkenswerte nacheiszeitliche Wiederbesiedlung erlebte. Um die Muster in ihrer Wiederbesiedlung und Diversifizierung besser zu verstehen, untersuchten wir die morphologischen Unterschiede zwischen adulten Dickschnabelkrähen, die in Japan und dem russischen Fernen Osten gesammelt worden waren: auf Hokkaido, der Insel Sachalin, dem asiatischen Festlands-Küstenstreifen an der Meerenge von Tatarsky, gegenüber der Insel Sachalin, und dem Gebiet westlich dem Sichote-Alin-Gebirge. Wir nahmen vier Schädel-, fünf Schnabel-Maße und Körpermassen an 195 Tieren vor und fanden bei den meisten Populationen, besonders auf Hokkaido und der Insel Sachalin, sowohl für Männchen als auch für die Weibchen bei den diversen Merkmalen klare Unterschiede; die Krähen auf Hokkaido hatten größere Schnäbel und eine geringere Körpermasse. Die Unterschiede zwischen den Populationen auf Hokkaido und der Insel Sachalin entsprechen den Regeln von Bergmann und von Allen, was aber nicht für die Längengrad-Kline der drei Populationen aus dem russischen Fernen Osten zutraf. Unsere Ergebnisse legen nahe, dass die La-Pérouse-Straße (die Meerenge zwischen Hokkaidos Nord- und Sachalins Südspitze) zwei von uns vermutete Wiederbesiedlungs-Bewegungen trennte: die eine das Festland entlang von der Ussuri-Gegend bis zur Insel Sachalin, die andere entlang des japanischen Archipels bis Hokkaido. Ganz offensichtlich ist für Dickschnabelkrähen-Populationen diese Meerenge eine wirksamere Barriere als die Meerenge von Tatarsky oder der Sichote-Alin-Gebirgszug.



We would like to thank V. Nechaev and the staff of the Institute of Biology and Soil Science, Russian Academy of Sciences, for their support in collecting samples from the Primorsky and Khabarovsky regions. We also express our thanks to K. Tamada, who generously lent the Hokkaido skull collection to us for examination. SN is grateful to T. Yamasaki, M. Kajita, H. Matsuoka and H. Suzuki for their advice and is thankful to I. Boyarkin and Y. Vishnyakov for collecting samples from Sakhalin Island. A considerable number of crows are exterminated as agricultural pests in Russia’s Far East; the permits for the collection of crow bodies were issued by the Department of Natural Resources of each provincial government.


  1. Avise JC, Walker D, Johns GC (1998) Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc R Soc B 265:1707–1712CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bumess G, Huard JR, Malcolm E, Tattersall GJ (2013) Post-hatch heat warms adult beaks: irreversible physiological plasticity in Japanese quail. Pros R Soc B 280:20131436. doi: 10.1098/rspb.2013.1436 CrossRefGoogle Scholar
  3. Cai Q (1987) Birds of Beijing. Natural History Museum, Beijing (in Chinese)Google Scholar
  4. Dickinson EC, Christidis L (eds) (2014) The Howard and Moore complete check-list of the birds of the World, Vol 2, 4th edn. Aves Press, EastbourneGoogle Scholar
  5. Frenzel B, Pecsi M, Velichko AA (1992) Atlas of paleoclimates and paleoenvironments of the northern hemisphere, Late Pleistocene–Holocene. Geographical Research Institute, Hungarian Academy of Sciences, BudapestGoogle Scholar
  6. Futuyma DJ (1986) Evolutionary biology, 2nd edn. Sinauer, SunderlandGoogle Scholar
  7. Goodwin D (1986) Crows of the world. The British Museum (Natural History), LondonGoogle Scholar
  8. Graves GR (1991) Bergmann’s rule near the equator: latitudinal clines in an Andean passerine bird. Proc Natl Acad Sci USA 88:2322–2325CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913CrossRefPubMedGoogle Scholar
  10. Hijmans RJ, Guarino L, Mathur P (2012) DIVA-GIS. Vsn. 7.5 Manual. Accessed 20 Apr 2016
  11. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  12. Iwasa M, Kryukov A, Kakizawa R, Suzuki H (2002) Differentiation of mitochondrial gene of Jungle Crow Corvus macrorhynchos (Corvidae) in East and South Asia. J Yamashina Inst Ornithol 34:66–72CrossRefGoogle Scholar
  13. James FC (1970) Geographic size variation in birds and its relationship to climate. Ecology 51:365–390CrossRefGoogle Scholar
  14. Jenner B, Bochenski ZM, Tomek T (2001) Relative differentiation of skeltal elements in European corvids. J Ornithol 142:30–33CrossRefGoogle Scholar
  15. Kryukov A, Spiridonova L, Nakamura S, Haring E, Suzuki H (2012) Comparative phylogeography of the two crow species, Jungle Crow Corvus macrorhynchos and Carrion Crow Corvus corone. Zool Sci 29:484–492CrossRefPubMedGoogle Scholar
  16. MacDonald GM, Velichko AA, Kremenetski CV, Borisova OK, Goleva AA, Andreev AA, Cwynar LC, Riding RT, Forman SL, Edwards TWD, Aravena R, Hammarlund D, Szeicz JM, Gattaulin VN (2000) Holocene treeline history and climate change across northern Eurasia. Quat Res 53(3):302–311CrossRefGoogle Scholar
  17. Matsuoka H, Abe M, Ito Y, Harashima H (2009) Bird bone watching. NTS, Tokyo (in Japanese)Google Scholar
  18. Miyazaki G (2009) Crows nestling watching. Shinjusha, Tokyo (in Japanese)Google Scholar
  19. Nakamura S (2000) Nest site comparisons between the Carrion Crow Corvus corone and Jungle Crow Corvus macrorhynchos in Takatsuki city. Jpn J Ornithol 49:39–50 (in Japanese with English summary)CrossRefGoogle Scholar
  20. Nakamura S, Kryukov A (2015) Phenetic analysis of skull reveals difference between Hokkaido and Sakhalin population of the Jungle Crow Corvus macrorhynchos. Russian J Ornithol 24(1147):1845–1858Google Scholar
  21. Nechaev VA (1991) Birds of Sakhalin Island. USSR Academy of Sciences Far Eastern Branch, Vladivostok (in Russian)Google Scholar
  22. Ohshima K (1990) The history of straits around the Japanese Islands in the late-quaternary. Quat Res 29:193–208 (in Japanese with English summary)CrossRefGoogle Scholar
  23. Ono Y (1990) The Northern landbridge of Japan. Quat Res 29:183–192 (in Japanese with English summary)CrossRefGoogle Scholar
  24. Ono Y, Igarashi Y, Kawamura Y (1992) Last glacial paleoenvironment, vegetation and fauna in Monsoon Asia and Japanese Islands. In: Akazawa T (ed) Presented at the International Symposium on Prehistoric Dispersal of Mongoloid. University of Tokyo, Tokyo, pp 72–76 (in Japanese with English summary)Google Scholar
  25. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. doi: 10.5194/hess-11-1633-2007 CrossRefGoogle Scholar
  26. Ray N, Adams J (2001) A GIS-based vegetation map of the world at the Last Glacial Maximum (25,000–15,000 BP). Int Archaeol 11:1–44. Accessed 20 Apr 2016
  27. Reifova R, Reif J, Antczak M, Nachman M (2011) Ecological character displacement in the face of gene flow: evidence from two species of nightingales. BMC Evol Biol 11:1471–2148. doi: 10.1186/1471-2148-11-138 CrossRefGoogle Scholar
  28. SAS Institute Inc. (2009) Accessed 20 Apr 2016
  29. Scheldeman X, van Zonneveld M (2010) Training manual on spatial analysis of plant diversity and distribution. Bioversity International. Accessed 20 Apr 2016
  30. Slagsvold T (1982) Sex, size and natural selection in the Hooded Crow Corvus corone cornix. Ornis Scand 13:165–175CrossRefGoogle Scholar
  31. Tamada K, Fujimaki Y (1993) Breeding biology of Corvus corone and C. macrorhynchos in central Hokkaido. Jpn J Ornithol 42:9–20 (in Japanese with English summary)CrossRefGoogle Scholar
  32. Ueta M (2012) Jungle Crows and Carrion Crows changed migration route depending on wind direction. Bird Res 8:1–4 (in Japanese with English summary). Available at:
  33. Vaurie C (1959) The birds of Palearctic Fauna: a systematic reference, order passeriformes. Witherby, LondonGoogle Scholar
  34. WorldClim (2015) Global climate data. Accessed 20 Apr 2016
  35. Yom-Tov Y, Geffen E (2011) Recent spatial and temporal changes in body size of terrestrial vertebrates: probable causes and pitfalls. Biol Rev 86:531–541. doi: 10.1111/j.1469-185X.2010.00168.x CrossRefPubMedGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2016

Authors and Affiliations

  1. 1.Ornithological Society of JapanTokyoJapan
  2. 2.Institute of Biology and Soil Science, Far East BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations