Skip to main content

Advertisement

Log in

Annual cycle and migration strategies of a habitat specialist, the Tawny Pipit Anthus campestris, revealed by geolocators

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Habitat specialist species occupy narrow ecological niches, typically utilizing similar habitat types throughout the annual cycle. Their strict requirements for specific habitats may make them vulnerable to environmental changes, especially in small, local populations. Therefore, detailed knowledge of the species’ ecology is crucial for conservation purposes. In this study, we used light-level geolocators to identify migration routes and non-breeding areas of a distinct specialist for dry habitats, the Tawny Pipit Anthus campestris, from a currently declining central European breeding population. During autumn and spring migration, the majority of the birds followed a route along the northwest of the Alps and via the Iberian Peninsula, with stopover sites mainly in northern Africa. In each migration season, however, one of two different individuals took a detour around the eastern side of the Alps. When crossing the main ecological barrier, the Sahara Desert, three of six birds followed the Atlantic coastline in autumn, whereas all five birds migrated near the coast in spring. Non-breeding areas of all tracked pipits were uniformly located in the Western Sahel, with five of six birds utilizing two main non-breeding sites, the second of which was always located west of the first. On average, the tracked birds spent 48 % of the year at the non-breeding areas, 27 % on migration, and 25 % at the breeding site. Our findings demonstrate strong migratory connectivity in Tawny Pipits which may have future implications for conservation of this long-distance migrant.

Zusammenfassung

Jahreszyklus und Zugstrategien des Brachpiepers als Habitatspezialisten mit Hilfe von Geolokatoren offengelegt

Habitatspezialisten weisen enge ökologische Nischen auf und nutzen während des gesamten Jahres weitestgehend ähnliche Habitate. Solch ein enger Anspruch an einen Habitattyp könnte die betreffende Art, insbesondere kleine, lokale Populationen, angreifbar für Umweltveränderung machen. Ein fundiertes Wissen zur Ökologie solcher Arten ist demnach ausschlaggebend für gezielte Schutzmassnahmen. In der vorliegenden Studie verwendeten wir Geolokatoren, um die Zugrouten und Aufenthaltsgebiete außerhalb der Brutzeit des an Trockenhabitate gebundenen Brachpiepers Anthus campestris zu identifizieren, die aus einer rückläufigen mitteleuropäischen Brutpopulation stammten. Die Mehrzahl der Vögel nutzte auf dem Herbst- und Frühlingszug eine Flugroute nordwestlich der Alpen über die Iberische Halbinsel mit Rastplätzen in Nordafrika. Jedoch flog in jeder Zugsaison ein jeweils anderes Individuum einen Umweg um die Alpen östlich zu umgehen. Die Sahara als grosse ökologische Barriere wurde im Herbst von drei der sechs Vögel entlang der Atlantik-Küste überquert, während im Frühling alle Vögel diesen Weg nahmen. Alle untersuchten Pieper überwinterten in der westlichen Sahelzone. Fünf der sechs Vögel nutzten dabei zwei getrennte Überwinterungsplätze, wobei der zweite Aufenthaltsort jeweils westlich vom ersten lag. Die untersuchten Pieper verbrachten 48 % des Jahres in ihrem Überwinterungsquartier, 27 % auf dem Zug und 25 % der Zeit am Brutplatz. Unsere Ergebnisse belegen für den Brachpieper eine starke Zugkonnektivität, die Konsequenzen für zukünftige Schutzmaßnahmen haben könnte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alerstam T (2011) Optimal bird migration revisited. J Ornithol 152:5–23. doi:10.1007/s10336-011-0694-1

    Article  Google Scholar 

  • Alström P, Mild K (2003) Pipits and Wagtails of Europe, Asia and North America: identification and systematics. Christopher Helm, London

    Google Scholar 

  • Bairlein F (1985) Body weights and fat deposition of Palaearctic passerine migrants in the central Sahara. Oecologia 66:141–146

    Article  Google Scholar 

  • Bairlein F, Dierschke J, Dierschke V, Salewski V, Geiter O, Hüppop K, Köppen U, Fiedler W (2014) Atlas des Vogelzugs. Ringfunde deutscher Brut- und Gastvögel. AULA-Verlag, Wiebelsheim

    Google Scholar 

  • Bauer S, Lisovski S, Hahn S (2015) Timing is crucial for consequences of migratory connectivity. Oikos. doi:10.1111/oik.02706

    Google Scholar 

  • BirdLife International and NatureServe (2011) Bird species distribution maps of the world. BirdLife International, Cambridge and NatureServe, Arlington

  • Cramp S (1988) Handbook of the birds of Europe, the Middle East, and North Africa: the birds of the western Palearctic, vol 5. Oxford University Press, Oxford

    Google Scholar 

  • Cresswell W (2014) Migratory connectivity of Palaearctic-African migratory birds and their responses to environmental change: the serial residency hypothesis. Ibis 156:493–510

    Article  Google Scholar 

  • Delmore KE, Fox JW, Irwin DE (2012) Dramatic intraspecific differences in migratory routes, stopover sites and wintering areas, revealed using light-level geolocators. Proc R Soc B Biol Sci 279:4582–4589. doi:10.1098/rspb.2012.1229

    Article  Google Scholar 

  • Finch T, Saunders P, Avilés JM, Bermejo A, Catry I, de la Puente J, Emmenegger T, Mardega I, Mayet P, Parejo D, Račinskis E, Rodríguez-Ruiz J, Sackl P, Schwartz T, Tiefenbach M, Valera F, Hewson C, Franco A, Butler SJ (2015) A pan-European, multipopulation assessment of migratory connectivity in a near-threatened migrant bird. Divers Distrib 21:1051–1062. doi:10.1111/ddi.12345

    Article  Google Scholar 

  • Gee J (1984) The birds of Mauritania. Malimbus 6:31–66

    Google Scholar 

  • Hahn S, Amrhein V, Zehtindijev P, Liechti F (2013) Strong migratory connectivity and seasonally shifting isotopic niches in geographically separated populations of a long-distance migrating songbird. Oecologia 173:1217–1225. doi:10.1007/s00442-013-2726-4

    Article  PubMed  Google Scholar 

  • Jenni L, Kéry M (2003) Timing of autumn bird migration under climate change: advances in long-distance migrants, delays in short-distance migrants. Proc R Soc B Biol Sci 270:1467–1471. doi:10.1098/rspb.2003.2394

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643. doi:10.1175/BAMS-83-11-1631

    Article  Google Scholar 

  • Keith S, Urban EK, Fry CH (1992) The birds of Africa, vol 4. Academic Press, London

    Google Scholar 

  • Kemp MU, Emiel van Loon E, Shamoun-Baranes J, Bouten W (2012) RNCEP: global weather and climate data at your fingertips. Methods Ecol Evol 3:65–70. doi:10.1111/j.2041-210X.2011.00138.x

    Article  Google Scholar 

  • Kristensen MW, Tøttrup AP, Thorup K (2013) Migration of the Common Redstart (Phoenicurus phoenicurus): a Eurasian songbird wintering in highly seasonal conditions in the West African Sahel. Auk 130:258–264. doi:10.1525/auk.2013.13001

    Article  Google Scholar 

  • Lemke HW, Tarka M, Klaassen RHG, Åkesson M, Bensch S, Hasselquist D, Hansson B (2013) Annual cycle and migration strategies of a trans-saharan migratory songbird: a geolocator study in the great reed warbler. PLoS One 8:e79209. doi:10.1371/journal.pone.0079209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liechti F, Scandolara C, Rubolini D, Ambrosini R, Korner-Nievergelt F, Hahn S, Lardelli R, Romano M, Caprioli M, Romano A, Sicurella B, Saino N (2015) Timing of migration and residence areas during the non-breeding period of barn swallows Hirundo rustica in relation to sex and population. J Avian Biol 46:254–265. doi:10.1111/jav.00485

    Article  Google Scholar 

  • Lisovski S, Hahn S (2012) GeoLight—processing and analysing light-based geolocator data in R. Method Ecol Evol 3:1055–1059. doi:10.1111/j.2041-210X.2012.00248.x

    Article  Google Scholar 

  • Lisovski MS, Bauer S, Emmenegger T (2012) GeoLight: analysis of light based geolocator data. R package version 1.03

  • Lisovski S, Hewson CM, Klaassen RHG, Korner-Nievergelt F, Kristensen MW, Hahn S (2012b) Geolocation by light: accuracy and precision affected by environmental factors. Method Ecol Evol 3:603–612. doi:10.1111/j.2041-210X.2012.00185.x

    Article  Google Scholar 

  • McPeek M (1996) Trade-offs, food web structure, and the coexistence of habitat specialists and generalists. Am Nat 148:124–138

    Article  Google Scholar 

  • Moreau RE (1961) Problems of Mediterranean–Saharan migration. Ibis 103a:373–427

  • Moreau RE (1972) The Palearctic African bird migration systems. Academic Press, London

    Google Scholar 

  • Morrison CA, Robinson RA, Clark JA, Risely K, Gill JA (2013) Recent population declines in Afro-Palaearctic migratory birds: the influence of breeding and non-breeding seasons. Divers Distrib 19:1051–1058. doi:10.1111/ddi.12084

    Article  Google Scholar 

  • Nilsson C, Klaassen RHG, Alerstam T (2013) Differences in speed and duration of bird migration between spring and autumn. Am Nat 181:837–845. doi:10.1086/670335

    Article  PubMed  Google Scholar 

  • Ouwehand J, Ahola MP, Ausems ANMA, Bridge ES, Burgess M, Hahn S, Hewson C, Klaassen RHG, Laaksonen T, Lampe HM, Velmala W, Both C (2015) Light-level geolocators reveal migratory connectivity in European populations of pied flycatchers Ficedula hypoleuca. J Avian Biol 46:001–015. doi:10.1111/jav.00721

    Article  Google Scholar 

  • Rice W, Gaines S (1994) “Heads I win, tails you lose”: testing directional alternative hypotheses in ecological and evolutionary research. Trends Ecol Evol 6:235–237

    Article  Google Scholar 

  • Sikora A, Rohde Z, Gromadzki M, Neubauer G, Chylarecki P (eds) (2007) Atlas rozmieszczenia ptaków lęgowych Polski 1985–2004. Bogucki Wyd. Nauk, Poznań

    Google Scholar 

  • Smith K (1968) Spring migration through southeast Morocco. Ibis 110:452–492

    Article  Google Scholar 

  • Šťastný K, Bejček V, Hudec K (2006) Atlas hnízdního rozšíření ptáků v České republice 2001–2003. Aventinum, Praha

    Google Scholar 

  • Stresemann E, Stresemann V (1968) Die Mauser von Anthus campestris und Anthus richardi. J Ornithol 109:291–313

    Google Scholar 

  • Sudfeldt CR, Dröschmeister R, Frederking W, Gedeon K, Gerlach B, Grüneberg C, Karthäuser J, Langgemach T, Schuster B, Trautmann S, Wahl J (2013) Vögel in Deutschland—2013. DDA, BfN, LAG VSW, Münster

    Google Scholar 

  • Tøttrup AP, Klaassen RHG, Strandberg R, Thorup K, Kristensen MW, Jørgensen PS, Fox J, Afanasyev V, Rahbek C, Alerstam T (2012) The annual cycle of a trans-equatorial Eurasian–African passerine migrant: different spatio-temporal strategies for autumn and spring migration. Proc R Soc B Biol Sci 279:1008–1016. doi:10.1098/rspb.2011.1323

    Article  Google Scholar 

  • Trierweiler C, Klaassen RHG, Drent RH, Exo K, Komdeur J, Bairlein F, Koks BJ (2014) Migratory connectivity and population- specific migration routes in a long-distance migratory bird. Proc R Soc B Biol Sci 281:20132897

    Article  Google Scholar 

  • Vickery JA, Ewing SR, Smith KW, Pain DJ, Bairlein F, Gregory RD, Škorpilová J (2014) The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156:1–22

    Article  Google Scholar 

  • Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT (2002) Links between worlds: unraveling migratory connectivity. Trends Ecol Evol 17:76–83

    Article  Google Scholar 

  • Wiens JA (1992) Ecology of bird communities. In: Foundations and patterns, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Zink G (1973) Der Zug europäischer Singvögel. Ein Atlas der Wiederfunde beringter Vögel. Band 1. Lieferung, Radolfzell-Möggingen

Download references

Acknowledgments

We thank Michal Porteš and Tomáš Koutný for their help with field work. We thank two referees and Daniel Hanley for their comments on an earlier version of the manuscript. This study was funded by the Czech Science Foundation (Grant #13-06451S) and in part by Palacký University grant scheme (IGA_PRF). The study complies with the current laws of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martins Briedis.

Additional information

Communicated by F. Bairlein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 393 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briedis, M., Beran, V., Hahn, S. et al. Annual cycle and migration strategies of a habitat specialist, the Tawny Pipit Anthus campestris, revealed by geolocators. J Ornithol 157, 619–626 (2016). https://doi.org/10.1007/s10336-015-1313-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-015-1313-3

Keywords

Navigation