Abstract
Habitat specialist species occupy narrow ecological niches, typically utilizing similar habitat types throughout the annual cycle. Their strict requirements for specific habitats may make them vulnerable to environmental changes, especially in small, local populations. Therefore, detailed knowledge of the species’ ecology is crucial for conservation purposes. In this study, we used light-level geolocators to identify migration routes and non-breeding areas of a distinct specialist for dry habitats, the Tawny Pipit Anthus campestris, from a currently declining central European breeding population. During autumn and spring migration, the majority of the birds followed a route along the northwest of the Alps and via the Iberian Peninsula, with stopover sites mainly in northern Africa. In each migration season, however, one of two different individuals took a detour around the eastern side of the Alps. When crossing the main ecological barrier, the Sahara Desert, three of six birds followed the Atlantic coastline in autumn, whereas all five birds migrated near the coast in spring. Non-breeding areas of all tracked pipits were uniformly located in the Western Sahel, with five of six birds utilizing two main non-breeding sites, the second of which was always located west of the first. On average, the tracked birds spent 48 % of the year at the non-breeding areas, 27 % on migration, and 25 % at the breeding site. Our findings demonstrate strong migratory connectivity in Tawny Pipits which may have future implications for conservation of this long-distance migrant.
Zusammenfassung
Jahreszyklus und Zugstrategien des Brachpiepers als Habitatspezialisten mit Hilfe von Geolokatoren offengelegt
Habitatspezialisten weisen enge ökologische Nischen auf und nutzen während des gesamten Jahres weitestgehend ähnliche Habitate. Solch ein enger Anspruch an einen Habitattyp könnte die betreffende Art, insbesondere kleine, lokale Populationen, angreifbar für Umweltveränderung machen. Ein fundiertes Wissen zur Ökologie solcher Arten ist demnach ausschlaggebend für gezielte Schutzmassnahmen. In der vorliegenden Studie verwendeten wir Geolokatoren, um die Zugrouten und Aufenthaltsgebiete außerhalb der Brutzeit des an Trockenhabitate gebundenen Brachpiepers Anthus campestris zu identifizieren, die aus einer rückläufigen mitteleuropäischen Brutpopulation stammten. Die Mehrzahl der Vögel nutzte auf dem Herbst- und Frühlingszug eine Flugroute nordwestlich der Alpen über die Iberische Halbinsel mit Rastplätzen in Nordafrika. Jedoch flog in jeder Zugsaison ein jeweils anderes Individuum einen Umweg um die Alpen östlich zu umgehen. Die Sahara als grosse ökologische Barriere wurde im Herbst von drei der sechs Vögel entlang der Atlantik-Küste überquert, während im Frühling alle Vögel diesen Weg nahmen. Alle untersuchten Pieper überwinterten in der westlichen Sahelzone. Fünf der sechs Vögel nutzten dabei zwei getrennte Überwinterungsplätze, wobei der zweite Aufenthaltsort jeweils westlich vom ersten lag. Die untersuchten Pieper verbrachten 48 % des Jahres in ihrem Überwinterungsquartier, 27 % auf dem Zug und 25 % der Zeit am Brutplatz. Unsere Ergebnisse belegen für den Brachpieper eine starke Zugkonnektivität, die Konsequenzen für zukünftige Schutzmaßnahmen haben könnte.
Similar content being viewed by others
References
Alerstam T (2011) Optimal bird migration revisited. J Ornithol 152:5–23. doi:10.1007/s10336-011-0694-1
Alström P, Mild K (2003) Pipits and Wagtails of Europe, Asia and North America: identification and systematics. Christopher Helm, London
Bairlein F (1985) Body weights and fat deposition of Palaearctic passerine migrants in the central Sahara. Oecologia 66:141–146
Bairlein F, Dierschke J, Dierschke V, Salewski V, Geiter O, Hüppop K, Köppen U, Fiedler W (2014) Atlas des Vogelzugs. Ringfunde deutscher Brut- und Gastvögel. AULA-Verlag, Wiebelsheim
Bauer S, Lisovski S, Hahn S (2015) Timing is crucial for consequences of migratory connectivity. Oikos. doi:10.1111/oik.02706
BirdLife International and NatureServe (2011) Bird species distribution maps of the world. BirdLife International, Cambridge and NatureServe, Arlington
Cramp S (1988) Handbook of the birds of Europe, the Middle East, and North Africa: the birds of the western Palearctic, vol 5. Oxford University Press, Oxford
Cresswell W (2014) Migratory connectivity of Palaearctic-African migratory birds and their responses to environmental change: the serial residency hypothesis. Ibis 156:493–510
Delmore KE, Fox JW, Irwin DE (2012) Dramatic intraspecific differences in migratory routes, stopover sites and wintering areas, revealed using light-level geolocators. Proc R Soc B Biol Sci 279:4582–4589. doi:10.1098/rspb.2012.1229
Finch T, Saunders P, Avilés JM, Bermejo A, Catry I, de la Puente J, Emmenegger T, Mardega I, Mayet P, Parejo D, Račinskis E, Rodríguez-Ruiz J, Sackl P, Schwartz T, Tiefenbach M, Valera F, Hewson C, Franco A, Butler SJ (2015) A pan-European, multipopulation assessment of migratory connectivity in a near-threatened migrant bird. Divers Distrib 21:1051–1062. doi:10.1111/ddi.12345
Gee J (1984) The birds of Mauritania. Malimbus 6:31–66
Hahn S, Amrhein V, Zehtindijev P, Liechti F (2013) Strong migratory connectivity and seasonally shifting isotopic niches in geographically separated populations of a long-distance migrating songbird. Oecologia 173:1217–1225. doi:10.1007/s00442-013-2726-4
Jenni L, Kéry M (2003) Timing of autumn bird migration under climate change: advances in long-distance migrants, delays in short-distance migrants. Proc R Soc B Biol Sci 270:1467–1471. doi:10.1098/rspb.2003.2394
Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643. doi:10.1175/BAMS-83-11-1631
Keith S, Urban EK, Fry CH (1992) The birds of Africa, vol 4. Academic Press, London
Kemp MU, Emiel van Loon E, Shamoun-Baranes J, Bouten W (2012) RNCEP: global weather and climate data at your fingertips. Methods Ecol Evol 3:65–70. doi:10.1111/j.2041-210X.2011.00138.x
Kristensen MW, Tøttrup AP, Thorup K (2013) Migration of the Common Redstart (Phoenicurus phoenicurus): a Eurasian songbird wintering in highly seasonal conditions in the West African Sahel. Auk 130:258–264. doi:10.1525/auk.2013.13001
Lemke HW, Tarka M, Klaassen RHG, Åkesson M, Bensch S, Hasselquist D, Hansson B (2013) Annual cycle and migration strategies of a trans-saharan migratory songbird: a geolocator study in the great reed warbler. PLoS One 8:e79209. doi:10.1371/journal.pone.0079209
Liechti F, Scandolara C, Rubolini D, Ambrosini R, Korner-Nievergelt F, Hahn S, Lardelli R, Romano M, Caprioli M, Romano A, Sicurella B, Saino N (2015) Timing of migration and residence areas during the non-breeding period of barn swallows Hirundo rustica in relation to sex and population. J Avian Biol 46:254–265. doi:10.1111/jav.00485
Lisovski S, Hahn S (2012) GeoLight—processing and analysing light-based geolocator data in R. Method Ecol Evol 3:1055–1059. doi:10.1111/j.2041-210X.2012.00248.x
Lisovski MS, Bauer S, Emmenegger T (2012) GeoLight: analysis of light based geolocator data. R package version 1.03
Lisovski S, Hewson CM, Klaassen RHG, Korner-Nievergelt F, Kristensen MW, Hahn S (2012b) Geolocation by light: accuracy and precision affected by environmental factors. Method Ecol Evol 3:603–612. doi:10.1111/j.2041-210X.2012.00185.x
McPeek M (1996) Trade-offs, food web structure, and the coexistence of habitat specialists and generalists. Am Nat 148:124–138
Moreau RE (1961) Problems of Mediterranean–Saharan migration. Ibis 103a:373–427
Moreau RE (1972) The Palearctic African bird migration systems. Academic Press, London
Morrison CA, Robinson RA, Clark JA, Risely K, Gill JA (2013) Recent population declines in Afro-Palaearctic migratory birds: the influence of breeding and non-breeding seasons. Divers Distrib 19:1051–1058. doi:10.1111/ddi.12084
Nilsson C, Klaassen RHG, Alerstam T (2013) Differences in speed and duration of bird migration between spring and autumn. Am Nat 181:837–845. doi:10.1086/670335
Ouwehand J, Ahola MP, Ausems ANMA, Bridge ES, Burgess M, Hahn S, Hewson C, Klaassen RHG, Laaksonen T, Lampe HM, Velmala W, Both C (2015) Light-level geolocators reveal migratory connectivity in European populations of pied flycatchers Ficedula hypoleuca. J Avian Biol 46:001–015. doi:10.1111/jav.00721
Rice W, Gaines S (1994) “Heads I win, tails you lose”: testing directional alternative hypotheses in ecological and evolutionary research. Trends Ecol Evol 6:235–237
Sikora A, Rohde Z, Gromadzki M, Neubauer G, Chylarecki P (eds) (2007) Atlas rozmieszczenia ptaków lęgowych Polski 1985–2004. Bogucki Wyd. Nauk, Poznań
Smith K (1968) Spring migration through southeast Morocco. Ibis 110:452–492
Šťastný K, Bejček V, Hudec K (2006) Atlas hnízdního rozšíření ptáků v České republice 2001–2003. Aventinum, Praha
Stresemann E, Stresemann V (1968) Die Mauser von Anthus campestris und Anthus richardi. J Ornithol 109:291–313
Sudfeldt CR, Dröschmeister R, Frederking W, Gedeon K, Gerlach B, Grüneberg C, Karthäuser J, Langgemach T, Schuster B, Trautmann S, Wahl J (2013) Vögel in Deutschland—2013. DDA, BfN, LAG VSW, Münster
Tøttrup AP, Klaassen RHG, Strandberg R, Thorup K, Kristensen MW, Jørgensen PS, Fox J, Afanasyev V, Rahbek C, Alerstam T (2012) The annual cycle of a trans-equatorial Eurasian–African passerine migrant: different spatio-temporal strategies for autumn and spring migration. Proc R Soc B Biol Sci 279:1008–1016. doi:10.1098/rspb.2011.1323
Trierweiler C, Klaassen RHG, Drent RH, Exo K, Komdeur J, Bairlein F, Koks BJ (2014) Migratory connectivity and population- specific migration routes in a long-distance migratory bird. Proc R Soc B Biol Sci 281:20132897
Vickery JA, Ewing SR, Smith KW, Pain DJ, Bairlein F, Gregory RD, Škorpilová J (2014) The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156:1–22
Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT (2002) Links between worlds: unraveling migratory connectivity. Trends Ecol Evol 17:76–83
Wiens JA (1992) Ecology of bird communities. In: Foundations and patterns, vol 1. Cambridge University Press, Cambridge
Zink G (1973) Der Zug europäischer Singvögel. Ein Atlas der Wiederfunde beringter Vögel. Band 1. Lieferung, Radolfzell-Möggingen
Acknowledgments
We thank Michal Porteš and Tomáš Koutný for their help with field work. We thank two referees and Daniel Hanley for their comments on an earlier version of the manuscript. This study was funded by the Czech Science Foundation (Grant #13-06451S) and in part by Palacký University grant scheme (IGA_PRF). The study complies with the current laws of the Czech Republic.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by F. Bairlein.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Briedis, M., Beran, V., Hahn, S. et al. Annual cycle and migration strategies of a habitat specialist, the Tawny Pipit Anthus campestris, revealed by geolocators. J Ornithol 157, 619–626 (2016). https://doi.org/10.1007/s10336-015-1313-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10336-015-1313-3