Journal of Ornithology

, Volume 157, Issue 2, pp 619–626 | Cite as

Annual cycle and migration strategies of a habitat specialist, the Tawny Pipit Anthus campestris, revealed by geolocators

  • Martins Briedis
  • Václav Beran
  • Steffen Hahn
  • Peter Adamík
Original Article

Abstract

Habitat specialist species occupy narrow ecological niches, typically utilizing similar habitat types throughout the annual cycle. Their strict requirements for specific habitats may make them vulnerable to environmental changes, especially in small, local populations. Therefore, detailed knowledge of the species’ ecology is crucial for conservation purposes. In this study, we used light-level geolocators to identify migration routes and non-breeding areas of a distinct specialist for dry habitats, the Tawny Pipit Anthus campestris, from a currently declining central European breeding population. During autumn and spring migration, the majority of the birds followed a route along the northwest of the Alps and via the Iberian Peninsula, with stopover sites mainly in northern Africa. In each migration season, however, one of two different individuals took a detour around the eastern side of the Alps. When crossing the main ecological barrier, the Sahara Desert, three of six birds followed the Atlantic coastline in autumn, whereas all five birds migrated near the coast in spring. Non-breeding areas of all tracked pipits were uniformly located in the Western Sahel, with five of six birds utilizing two main non-breeding sites, the second of which was always located west of the first. On average, the tracked birds spent 48 % of the year at the non-breeding areas, 27 % on migration, and 25 % at the breeding site. Our findings demonstrate strong migratory connectivity in Tawny Pipits which may have future implications for conservation of this long-distance migrant.

Keywords

Annual cycle Geolocation Habitat specialist Long-distance migrant Migratory strategy 

Zusammenfassung

Jahreszyklus und Zugstrategien des Brachpiepers als Habitatspezialisten mit Hilfe von Geolokatoren offengelegt

Habitatspezialisten weisen enge ökologische Nischen auf und nutzen während des gesamten Jahres weitestgehend ähnliche Habitate. Solch ein enger Anspruch an einen Habitattyp könnte die betreffende Art, insbesondere kleine, lokale Populationen, angreifbar für Umweltveränderung machen. Ein fundiertes Wissen zur Ökologie solcher Arten ist demnach ausschlaggebend für gezielte Schutzmassnahmen. In der vorliegenden Studie verwendeten wir Geolokatoren, um die Zugrouten und Aufenthaltsgebiete außerhalb der Brutzeit des an Trockenhabitate gebundenen Brachpiepers Anthus campestris zu identifizieren, die aus einer rückläufigen mitteleuropäischen Brutpopulation stammten. Die Mehrzahl der Vögel nutzte auf dem Herbst- und Frühlingszug eine Flugroute nordwestlich der Alpen über die Iberische Halbinsel mit Rastplätzen in Nordafrika. Jedoch flog in jeder Zugsaison ein jeweils anderes Individuum einen Umweg um die Alpen östlich zu umgehen. Die Sahara als grosse ökologische Barriere wurde im Herbst von drei der sechs Vögel entlang der Atlantik-Küste überquert, während im Frühling alle Vögel diesen Weg nahmen. Alle untersuchten Pieper überwinterten in der westlichen Sahelzone. Fünf der sechs Vögel nutzten dabei zwei getrennte Überwinterungsplätze, wobei der zweite Aufenthaltsort jeweils westlich vom ersten lag. Die untersuchten Pieper verbrachten 48 % des Jahres in ihrem Überwinterungsquartier, 27 % auf dem Zug und 25 % der Zeit am Brutplatz. Unsere Ergebnisse belegen für den Brachpieper eine starke Zugkonnektivität, die Konsequenzen für zukünftige Schutzmaßnahmen haben könnte.

Supplementary material

10336_2015_1313_MOESM1_ESM.pdf (393 kb)
Supplementary material 1 (PDF 393 kb)

References

  1. Alerstam T (2011) Optimal bird migration revisited. J Ornithol 152:5–23. doi:10.1007/s10336-011-0694-1 CrossRefGoogle Scholar
  2. Alström P, Mild K (2003) Pipits and Wagtails of Europe, Asia and North America: identification and systematics. Christopher Helm, LondonGoogle Scholar
  3. Bairlein F (1985) Body weights and fat deposition of Palaearctic passerine migrants in the central Sahara. Oecologia 66:141–146CrossRefGoogle Scholar
  4. Bairlein F, Dierschke J, Dierschke V, Salewski V, Geiter O, Hüppop K, Köppen U, Fiedler W (2014) Atlas des Vogelzugs. Ringfunde deutscher Brut- und Gastvögel. AULA-Verlag, WiebelsheimGoogle Scholar
  5. Bauer S, Lisovski S, Hahn S (2015) Timing is crucial for consequences of migratory connectivity. Oikos. doi:10.1111/oik.02706 Google Scholar
  6. BirdLife International and NatureServe (2011) Bird species distribution maps of the world. BirdLife International, Cambridge and NatureServe, ArlingtonGoogle Scholar
  7. Cramp S (1988) Handbook of the birds of Europe, the Middle East, and North Africa: the birds of the western Palearctic, vol 5. Oxford University Press, OxfordGoogle Scholar
  8. Cresswell W (2014) Migratory connectivity of Palaearctic-African migratory birds and their responses to environmental change: the serial residency hypothesis. Ibis 156:493–510CrossRefGoogle Scholar
  9. Delmore KE, Fox JW, Irwin DE (2012) Dramatic intraspecific differences in migratory routes, stopover sites and wintering areas, revealed using light-level geolocators. Proc R Soc B Biol Sci 279:4582–4589. doi:10.1098/rspb.2012.1229 CrossRefGoogle Scholar
  10. Finch T, Saunders P, Avilés JM, Bermejo A, Catry I, de la Puente J, Emmenegger T, Mardega I, Mayet P, Parejo D, Račinskis E, Rodríguez-Ruiz J, Sackl P, Schwartz T, Tiefenbach M, Valera F, Hewson C, Franco A, Butler SJ (2015) A pan-European, multipopulation assessment of migratory connectivity in a near-threatened migrant bird. Divers Distrib 21:1051–1062. doi:10.1111/ddi.12345 CrossRefGoogle Scholar
  11. Gee J (1984) The birds of Mauritania. Malimbus 6:31–66Google Scholar
  12. Hahn S, Amrhein V, Zehtindijev P, Liechti F (2013) Strong migratory connectivity and seasonally shifting isotopic niches in geographically separated populations of a long-distance migrating songbird. Oecologia 173:1217–1225. doi:10.1007/s00442-013-2726-4 CrossRefPubMedGoogle Scholar
  13. Jenni L, Kéry M (2003) Timing of autumn bird migration under climate change: advances in long-distance migrants, delays in short-distance migrants. Proc R Soc B Biol Sci 270:1467–1471. doi:10.1098/rspb.2003.2394 CrossRefGoogle Scholar
  14. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643. doi:10.1175/BAMS-83-11-1631 CrossRefGoogle Scholar
  15. Keith S, Urban EK, Fry CH (1992) The birds of Africa, vol 4. Academic Press, LondonGoogle Scholar
  16. Kemp MU, Emiel van Loon E, Shamoun-Baranes J, Bouten W (2012) RNCEP: global weather and climate data at your fingertips. Methods Ecol Evol 3:65–70. doi:10.1111/j.2041-210X.2011.00138.x CrossRefGoogle Scholar
  17. Kristensen MW, Tøttrup AP, Thorup K (2013) Migration of the Common Redstart (Phoenicurus phoenicurus): a Eurasian songbird wintering in highly seasonal conditions in the West African Sahel. Auk 130:258–264. doi:10.1525/auk.2013.13001 CrossRefGoogle Scholar
  18. Lemke HW, Tarka M, Klaassen RHG, Åkesson M, Bensch S, Hasselquist D, Hansson B (2013) Annual cycle and migration strategies of a trans-saharan migratory songbird: a geolocator study in the great reed warbler. PLoS One 8:e79209. doi:10.1371/journal.pone.0079209 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Liechti F, Scandolara C, Rubolini D, Ambrosini R, Korner-Nievergelt F, Hahn S, Lardelli R, Romano M, Caprioli M, Romano A, Sicurella B, Saino N (2015) Timing of migration and residence areas during the non-breeding period of barn swallows Hirundo rustica in relation to sex and population. J Avian Biol 46:254–265. doi:10.1111/jav.00485 CrossRefGoogle Scholar
  20. Lisovski S, Hahn S (2012) GeoLight—processing and analysing light-based geolocator data in R. Method Ecol Evol 3:1055–1059. doi:10.1111/j.2041-210X.2012.00248.x CrossRefGoogle Scholar
  21. Lisovski MS, Bauer S, Emmenegger T (2012) GeoLight: analysis of light based geolocator data. R package version 1.03Google Scholar
  22. Lisovski S, Hewson CM, Klaassen RHG, Korner-Nievergelt F, Kristensen MW, Hahn S (2012b) Geolocation by light: accuracy and precision affected by environmental factors. Method Ecol Evol 3:603–612. doi:10.1111/j.2041-210X.2012.00185.x CrossRefGoogle Scholar
  23. McPeek M (1996) Trade-offs, food web structure, and the coexistence of habitat specialists and generalists. Am Nat 148:124–138CrossRefGoogle Scholar
  24. Moreau RE (1961) Problems of Mediterranean–Saharan migration. Ibis 103a:373–427Google Scholar
  25. Moreau RE (1972) The Palearctic African bird migration systems. Academic Press, LondonGoogle Scholar
  26. Morrison CA, Robinson RA, Clark JA, Risely K, Gill JA (2013) Recent population declines in Afro-Palaearctic migratory birds: the influence of breeding and non-breeding seasons. Divers Distrib 19:1051–1058. doi:10.1111/ddi.12084 CrossRefGoogle Scholar
  27. Nilsson C, Klaassen RHG, Alerstam T (2013) Differences in speed and duration of bird migration between spring and autumn. Am Nat 181:837–845. doi:10.1086/670335 CrossRefPubMedGoogle Scholar
  28. Ouwehand J, Ahola MP, Ausems ANMA, Bridge ES, Burgess M, Hahn S, Hewson C, Klaassen RHG, Laaksonen T, Lampe HM, Velmala W, Both C (2015) Light-level geolocators reveal migratory connectivity in European populations of pied flycatchers Ficedula hypoleuca. J Avian Biol 46:001–015. doi:10.1111/jav.00721 CrossRefGoogle Scholar
  29. Rice W, Gaines S (1994) “Heads I win, tails you lose”: testing directional alternative hypotheses in ecological and evolutionary research. Trends Ecol Evol 6:235–237CrossRefGoogle Scholar
  30. Sikora A, Rohde Z, Gromadzki M, Neubauer G, Chylarecki P (eds) (2007) Atlas rozmieszczenia ptaków lęgowych Polski 1985–2004. Bogucki Wyd. Nauk, PoznańGoogle Scholar
  31. Smith K (1968) Spring migration through southeast Morocco. Ibis 110:452–492CrossRefGoogle Scholar
  32. Šťastný K, Bejček V, Hudec K (2006) Atlas hnízdního rozšíření ptáků v České republice 2001–2003. Aventinum, PrahaGoogle Scholar
  33. Stresemann E, Stresemann V (1968) Die Mauser von Anthus campestris und Anthus richardi. J Ornithol 109:291–313Google Scholar
  34. Sudfeldt CR, Dröschmeister R, Frederking W, Gedeon K, Gerlach B, Grüneberg C, Karthäuser J, Langgemach T, Schuster B, Trautmann S, Wahl J (2013) Vögel in Deutschland—2013. DDA, BfN, LAG VSW, MünsterGoogle Scholar
  35. Tøttrup AP, Klaassen RHG, Strandberg R, Thorup K, Kristensen MW, Jørgensen PS, Fox J, Afanasyev V, Rahbek C, Alerstam T (2012) The annual cycle of a trans-equatorial Eurasian–African passerine migrant: different spatio-temporal strategies for autumn and spring migration. Proc R Soc B Biol Sci 279:1008–1016. doi:10.1098/rspb.2011.1323 CrossRefGoogle Scholar
  36. Trierweiler C, Klaassen RHG, Drent RH, Exo K, Komdeur J, Bairlein F, Koks BJ (2014) Migratory connectivity and population- specific migration routes in a long-distance migratory bird. Proc R Soc B Biol Sci 281:20132897CrossRefGoogle Scholar
  37. Vickery JA, Ewing SR, Smith KW, Pain DJ, Bairlein F, Gregory RD, Škorpilová J (2014) The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156:1–22CrossRefGoogle Scholar
  38. Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT (2002) Links between worlds: unraveling migratory connectivity. Trends Ecol Evol 17:76–83CrossRefGoogle Scholar
  39. Wiens JA (1992) Ecology of bird communities. In: Foundations and patterns, vol 1. Cambridge University Press, CambridgeGoogle Scholar
  40. Zink G (1973) Der Zug europäischer Singvögel. Ein Atlas der Wiederfunde beringter Vögel. Band 1. Lieferung, Radolfzell-MöggingenGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  • Martins Briedis
    • 1
  • Václav Beran
    • 1
    • 2
    • 3
  • Steffen Hahn
    • 4
  • Peter Adamík
    • 1
    • 5
  1. 1.Department of ZoologyPalacký UniversityOlomoucCzech Republic
  2. 2.Municipal Museum of Ústí nad LabemÚstí nad LabemCzech Republic
  3. 3.ALKA Wildlife o.p.sDačiceCzech Republic
  4. 4.Department of Bird MigrationSwiss Ornithological InstituteSempachSwitzerland
  5. 5.Museum of Natural HistoryOlomoucCzech Republic

Personalised recommendations