First molecular study of prevalence and diversity of avian haemosporidia in a Central California songbird community

Abstract

We studied avian haemosporidian parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon in a riparian songbird community in Central California, USA, over a period of 2 years. We sequenced a well-characterized region of the mitochondrial cytochrome b gene to identify the prevalence and diversity of these parasites from 399 birds. Of the 39.8 % of birds infected with haemosporidian parasites, most (30.8 %) were infected with Plasmodium. We identified 35 lineages, including 13 from the Plasmodium genus, 12 from Haemoproteus, and 10 from Leucocytozoon, 14 of which were novel lineages. In addition, we provide the first report of haemosporidian infections in 13 host species. Plasmodium prevalence ranged widely among host species from 0.0 to 68.6 %. We identified 2 Plasmodium lineages that were generalists, infecting multiple species across several families. One Plasmodium species, P. homopolare, was found in 84 individual birds representing 9 host species from 5 families, but primarily from Emberizidae. This is the first avian haemosporidian study utilizing molecular methods in California, which increases our understanding of the diversity and prevalence of avian haemosporidia affecting Passeriformes in this region and beyond.

Zusammenfassung

Erste molekulare Studie zu Prävalenz und Diversität von Vogel-Hämosporidien einer Singvogelgemeinschaft in Zentral-Kalifornien

Wir untersuchten zwei Jahre lang Vogel-Hämosporidien der Gattungen Plasmodium, Haemoproteus und Leucocytozoon in einer Auwaldsingvogelgemeinschaft in Zentral-Kalifornien, USA. Mittels Sequenzierung einer gut charakterisierten Region des mitochondrialen Cytochrom-b-Gene haben wir die Prävalenz und Diversität dieser Malariaparasiten von 399 Vögeln ermittelt. Von den 39,8 % mit Hämosporidien infizierten Vögeln waren die meisten (30,8 %) mit Plasmodium befallen. Wir identifizierten 35 Linien, wovon 13 der Gattung Plasmodium angehörten, 12 der Gattung Haemoproteus und 10 der Gattung Leucocytozoon. 14 Linien waren bisher unbekannt. Erstmalig wurden 13 Arten auf ihren Hämosporidienbefall geprüft. Die Prävalenz mit Plasmodium betrug zwischen 0 und 68,6 %. Zwei der Plasmodium Linien waren Generalisten, die mehrere Vögel-Arten bzw. Familien infizierten. Einer dieser Generalisten, P. homopolare, wurde in 84 Individuen von neun Arten aus fünf Familien nachgewiesen, vornehmlich aber Emberizidae. Diese Studie ist die erste, die molekulare Methoden zum Nachweis von Hämosporidien in Vögeln in Kalifornien verwendete. Diese Ergebnisse erweitern unsere Kenntnis zu Diversität und Prävalenz von Vogel-Hämosporidiena bei Passeriformes in der Region und darüber hinaus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Atkinson CT (2008) Haemoproteus, Avian malaria. In: Atkinson CT, Thomas NJ, Hunter DB (eds) Parasitic diseases of wild birds. Wiley, Iowa, pp 13–53

    Chapter  Google Scholar 

  2. Atkinson CT, Dusek RJ, Lease JK (2001a) Serological responses and immunity to superinfection with avian malaria in experimentally-infected Hawaii Amakihi. J Wildl Dis 37:20–27

    CAS  Article  PubMed  Google Scholar 

  3. Atkinson CT, Lease JK, Drake BM, Shema NP (2001b) Pathogenicity, serological responses, and diagnosis of experimental and natural malarial infection in native Hawaiian thrushes. Condor 103:209–218

    Article  Google Scholar 

  4. Beadell JS, Gering E, Austin J, Dumbacher JP, Peirce MA, Pratt TK, Atkinson CT, Fleischer RC (2004) Prevalence and differential host-specificity of two avian blood parasite genera in the Australo–Papuan region. Mol Ecol 3:3829–3844

    Article  Google Scholar 

  5. Bennett GF, Garnham PCC, Fallis AM (1965) On the status of the genera Leucocytozoon Siemann, 1898 and Haemoproteus Kruse, 1890 (Haemosporidia: Leucocytozoidae and Haemoproteidae). Ibidem 43:927–932

    CAS  Google Scholar 

  6. Bensch S, Stjernman M, Hasselquist D et al (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc Lond B 267:1583–1589

    CAS  Article  Google Scholar 

  7. Bensch S, Perez-Tris J, Waldenstrom J, Hellgren D (2004) Linkage between nuclear and mitochondrial DNA sequences in avian malaria parasites: multiple cases of cryptic speciation. Evolution 58:1617–1621

  8. Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol 9:1353–1358

    Article  Google Scholar 

  9. Bolker BM (2008) Ecological models and data in R. Princeton University Press, Princeton

    Google Scholar 

  10. Cannell BL, Krasnec KV, Campbell K, Jones HI, Miller RD, Stephens N (2013) The pathology and pathogenicity of a novel Haemoproteus spp. infection in wild little penguins (Eudyptula minor). Vet Parasitol 197(1–2):74–84. doi:10.1016/j.vetpar.2013.04.025

    CAS  Article  PubMed  Google Scholar 

  11. Carlson JS, Martinez-Gomez JE, Valkiūnas G, Loiseau C, Bell DA, Sehgal R (2013) Diversity and phylogenetic relationships of haemosporidian parasites in birds of Socorro Island, Mexico, and their role in the re-introduction of the Socorro Dove (Zenaida graysoni). J Parasitol 99:270–276

    Article  PubMed  Google Scholar 

  12. Carlson JS, Walther EL, Trout Fryxell R, Staley S, Tell LA, Seghal RNM, Barker CM, Cornel AJ (2015) Identifying avian malaria vectors: sampling methods influence outcomes. Parasite Vector 8(1):1–16

    Article  Google Scholar 

  13. Clark GW, Swinehart B (1966) Blood protozoa of passerine birds of the Sacramento (Calif.) region. Bull Wildl Dis Assoc 2:53–54

    Article  Google Scholar 

  14. Clark NJ, Clegg SM, Lima MR (2014) A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): new insights from molecular data. Int J Parasitol 44(5):329–338

    Article  PubMed  Google Scholar 

  15. Cornelius EA, Davis AK, Altizer SA (2014) How important are haemoparasites to migratory songbirds? Evaluating physiological measures and infection status in three neotropical migrants during stopover. Physiol Biochem Zool 87:719–728

    CAS  Article  PubMed  Google Scholar 

  16. Dimitrov D, Palinauskas V, Iezhova TA, Bernotienė R, Ilgūnas M, Bukauskaitė D, Zehtindjiev P et al (2015) Plasmodium spp.: an experimental study on vertebrate host susceptibility to avian malaria. Exp Parasitol 148:1–16

    CAS  Article  PubMed  Google Scholar 

  17. Dodge M, Guers SL, Sekercioğlu C, Sehgal RNM (2013) North American transmission of haemosporidian parasites in the Swainson’s Thrush (Catharus ustulatus), a migratory songbird. J Parasitol 99:548–553

    Article  PubMed  Google Scholar 

  18. Fallon SM, Ricklefs RE (2008) Parasitemia in PCR-detected Plasmodium and Haemoproteus infection in birds. J Avian Biol 39:514–522

    Article  Google Scholar 

  19. Fallon SM, Bermingham E, Ricklefs RE (2003) Island and taxon effects in parasitism revisited: avian malaria in the Less Antilles. Evolution 57:606–615

    Article  PubMed  Google Scholar 

  20. Fecchio A, Lima MR, Svensson-Coelho M, Marini MA, Ricklefs RE (2013) Structure and organization of an avian haemosporidian assemblage in a Neotropical savannah in Brazil. Parasitology 140:181–192

    Article  Google Scholar 

  21. Galtier N, Gouy M, Gautier C (1996) SEAVIEWandPHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548

    CAS  PubMed  Google Scholar 

  22. Garamszegi LZ (2010) The sensitivity of microscopy and PCR-based detection methods affecting estimates of prevalence of blood parasites in birds. J Parasitol 96(6):1197–1203

    Article  PubMed  Google Scholar 

  23. Garnham PCC (1966) Malaria parasites and other Haemosporidia. Blackwell, Oxford

    Google Scholar 

  24. Gonzalez AD, Lotta IA, Garcia LF, Moncada LI, Matta NE (2015) Avian haemosporidians from Neotropical highlands: Evidence from morphological and molecular data. Parasitol Int 64(4):48–59

    Article  PubMed  Google Scholar 

  25. Greiner EC, Bennett GF, White EM, Coombs RF (1975) Distribution of the avian hematozoa of North America. Can J Zool 53:1762–178

    CAS  Article  PubMed  Google Scholar 

  26. Hellgren O (2005) The occurrence of haemosporidian parasites in the Fennoscandian bluethroat (Luscinia svecica) population. J Ornithol 146:55–60

  27. Hellgren O, Waldenström J, Bensch S (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol 90:797–802

    CAS  Article  PubMed  Google Scholar 

  28. Herman CM, Reeves WC, McClure HE, French EM, Hammon W (1954) Studies on avian malaria in vectors and hosts of encephalitis in Kern County, CA: infections in avian hosts. Am J Trop Med Hyg 3:676–695

    CAS  PubMed  Google Scholar 

  29. Herms WB, Kadner CG, Galindo P, Armstrong DF (1939) Blood parasites of California birds. J Parasitol 25(6):511–512

    Article  Google Scholar 

  30. Ishtiaq F, Gering E, Rappole JH, Rahmani AR, Jhala YV, Dove CJ, Milensky C, Olson SL, Peirce MA, Fleischer RC (2007) Prevalence and diversity of avian hematozoan parasites in Asia: a regional survey. J Wild Dis 43(3):382–398

    Article  Google Scholar 

  31. Jarvi SI, Schultz JJ, Atkinson CT (2002) PCR diagnostics underestimate the prevalence of avian malaria (Plasmodium relictum) in experimentally-infected passerines. J Parasitol 88:153–188

    Article  PubMed  Google Scholar 

  32. Jasper WC, Linksvayer TA, Atallah J, Friedman D, Chiu JC, Johnson BR (2014) Large scale coding sequence change underlies the evolution of post-developmental novelty in honey bees. Mol Biol Evol 10.1093/molbev/msu292

  33. Jovani R, Tella JL (2006) Parasite prevalence and sample size: misconceptions and solutions. Trends Parasitol 22:214–218

    Article  PubMed  Google Scholar 

  34. Knowles SCL, Wood MJ, Alves R, Wilkin TA, Bensch S, Sheldon BC (2011) Molecular epidemiology of malaria prevalence and parasitemias in a wild bird population. Mol Ecol 20:1062–1076

    Article  PubMed  Google Scholar 

  35. Lachish S, Knowles SCL, Alves R, Wood MJ, Sheldon BC (2011) Infection dynamics of endemic malaria in a wild bird population: parasite species-dependent drivers of spatial and temporal variation in transmission rates. J Anim Ecol 80:1207–1216

    Article  PubMed  Google Scholar 

  36. Lauron EJ, Loiseau C, Bowie RCK, Spicer G, Smith TB, Melo M, Sehgal RNM (2014) Coevolutionary patterns and diversification of avian malaria parasites in African sunbirds (Family Nectariniidae). Parasitology. doi:10.1017/S0031182014001681

    PubMed  Google Scholar 

  37. Loiseau C, Harrigan RJ, Cornel AJ, Guers SL, Dodge M, Marzec T, Carlson JS, Seppi B, Sehgal RNM (2012) First evidence and predictions of Plasmodium transmission in Alaskan bird populations. PLoS ONE 7:e44729

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Martinson ES, Blumberg BJ, Eisen RJ, Schall JJ (2008) Avian haemosporidian parasites from northern California oak woodland and chaparral habitats. J Wildl Dis 44:260–268

    Article  Google Scholar 

  39. Møller AP, Erriyzøe J (1998) Host immune defence and migration in birds. Evol Ecol 12:945–953

    Article  Google Scholar 

  40. Njabo KY, Cornel AJ, Bonneaud C, Toffelmier E, Sehgal RNM, Valkiūnas G, Russell AF, Smith TB (2010) Nonspecific patterns of vector, host and avian malaria parasite associations in a central African rainforest. Mol Ecol 20:1049–1060

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nylander JAA, Ronquist JP, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67

    Article  PubMed  Google Scholar 

  42. Outlaw DC, Ricklefs RE (2014) Species limits in avian malaria parasites (Haemosporida): how to move forward in the molecular era. Parasitology 141(10):1223–1232

    Article  PubMed  Google Scholar 

  43. Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S (2008) Plasmodium relictum (lineage P-SGS1): effects on experimentally infected passerine birds. Exp Parasitol 120:372–380

    Article  PubMed  Google Scholar 

  44. Palinauskas V, Žiegyte R, Ilgūnas M, Iezhova TA, Bernotiene R, Bolshakov C, Valkiūnas G (2015) Description of the first cryptic avian malaria parasite, Plasmodium homocircumflexum n. sp., with experimental data on its virulence and development in avian hosts and mosquitoes. Int J Parasitol 45:51–62

  45. Pérez-Tris J, Bensch S (2005) Dispersal increases local transmission of avian malarial parasites. Ecol Lett 8:838–845

    Article  Google Scholar 

  46. Perkins SL (2014) Malaria’s many mates: past, present and future of the systematics of the order haemosporidia. J Parasitol 100:11–25

    Article  PubMed  Google Scholar 

  47. Richard FA, Sehgal RNM, Jones HI, Smith TB (2002) A comparative analysis of PCR-based detection methods for avian malaria. J Parasitol 88:819–822

    CAS  Article  PubMed  Google Scholar 

  48. Ricklefs RE, Fallon SM (2002) Diversification and host switching in avian malaria parasites. Proc R Soc Lond B 269:885–892

    Article  Google Scholar 

  49. Ricklefs RE, Fallon SM, Bermingham E (2004) Evolutionary relationships, cospeciation, and host switching in avian malaria parasites. Syst Biol 52:111–119

    Article  Google Scholar 

  50. Ricklefs RE, Swanson BL, Fallon SM, Martinez-Abraín A, Scheuerlein A, Gray J, Latta SC (2005) Community relationships of avian malaria parasites in Southern Missouri. Ecol Monogr 75:543–559

    Article  Google Scholar 

  51. Ricklefs RE, Outlaw DC, Svensson-Coelho M, Medeiros MCI, Ellis VA, Latta S (2014) Species formation by host shifting in avian malaria parasites. Proc Natl Acad Sci USA 111:14816–14821

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    CAS  Article  PubMed  Google Scholar 

  53. Sehgal RNM, Lovette IJ (2003) Molecular evolution of three avian neurotrophin genes: implications for proregion functional constraints. J Mol Evol 57:335–342

    CAS  Article  PubMed  Google Scholar 

  54. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    CAS  Article  PubMed  Google Scholar 

  55. Super PE, van Riper C (1995) A comparison of avian hematozoan epizootiology in two California coastal scrub communities. J Wildl Dis 31:447–461

    CAS  Article  PubMed  Google Scholar 

  56. Svensson-Coelho M, Blake JG, Loiselle BA, Penrose AS, Parker PG, Ricklefs RE (2013) Diversity, prevalence, and host specificity of avian Plasmodium and Haemoproteus in a western Amazon assemblage. Ornithol Monogr 76:1–47

    Article  Google Scholar 

  57. Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC, Boca Raton

    Google Scholar 

  58. Valkiūnas G, Bensch S, Iezhova TA, Križanauskienė A, Hellgren O, Bolshakov CV (2006) Nested cytochrome b polymerase chain reaction diagnostics underestimate mixed infections of avian blood haemosporidian parasites: microscopy is still essential. J Parasitol 92(2):418–422

    Article  PubMed  Google Scholar 

  59. Valkiūnas G, Iezhova TA, Križanauskienė A, Palinauskas V, Sehgal RNM, Bensch S (2008) A comparative analysis of microscopy and PCR-based detection methods for blood parasites. J Parasitol 94:1395–1401

    Article  PubMed  Google Scholar 

  60. Valkiūnas G, Ashford RW, Bensch S, Killick-Kendrick R, Perkins S (2011) A cautionary note concerning Plasmodium in apes. Trends Parasitol 27(6):231–232

    Article  PubMed  Google Scholar 

  61. Valkiūnas G, Palinauskas V, Ilgūnas M, Bukauskaitė D, Dimitrov D, Bernotienė R, Zehtindjiev P, Ilieva M, Iezhova TA (2014) Molecular characterization of five widespread avian haemosporidian parasites (Haemosporida), with perspectives on the PCR-based detection of haemosporidians in wildlife. Parasitol Res 113:2251–2263

    Article  PubMed  Google Scholar 

  62. Waldenström J, Bensch S, Kiboi S, Hasselquist D, Ottosson U (2002) Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol Ecol 11:1545–1554

    Article  PubMed  Google Scholar 

  63. Waldenström J, Bensch S, Hasselquist D, Östman Ö (2004) A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90:191–194

    Article  PubMed  Google Scholar 

  64. Walther EL, Valkiūnas G, González AD, Matta NE, Ricklefs RE, Cornel A, Sehgal RNM (2014) Description, molecular characterization, and patterns of distribution of a widespread New World avian malaria parasite (Haemosporida: Plasmodiidae), Plasmodium (Novyella) homopolare sp. nov. Parasitol Res 113:3319–3332

    Article  PubMed  Google Scholar 

  65. Wood FD, Wood SF (1937) Occurrence of haematozoa in some California birds and mammals. J Parasitol 23:197–201

    Article  Google Scholar 

  66. Zehtindjiev P, Ilieva M, Westerdahl H, Hansson B, Valkiūnas G, Bensch S (2008) Dynamics of parasitemias of malaria parasites in a naturally and experimentally infected migratory songbird, the great reed warbler, Acrocephalus arundinaceus. Exp Parasitol 119:99–110

    Article  PubMed  Google Scholar 

  67. Žiegytė R, Valkiūnas G (2014) Recent advances in vector studies of avian haemosporidian parasites. Ekologija 60(4):73–83

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the San Francisco State University Arthur Nelson Scholarship and the San Francisco State University Instructionally Related Activities Grant. The authors wish to thank the County of Fresno and the Consolidated Mosquito Abatement District for access to the field site and the Kearney Agricultural Research and Extension (KARE) Center in Parlier, California, for providing lodging. We thank Annette Chan (SFSU staff) for microscopy assistance, Greg Spicer and Andrea Swei (SFSU faculty) for phylogenetics and R statistical software expertise, respectively; Elvin Lauron for laboratory assistance; and, Tija Altergott, Holly Archer, Doug Bell, Molly Dodge, Sierra Flynn, Ariana LaPorte, Leonard Liu, Claire Loiseau, Tim Marzec, Allison Nelson, Katherine Purcell, Elaine Vo and Laura Wilkinson for assistance with data collection in the field.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Erika L. Walther.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. The bird sampling methodology was approved by the Institutional Animal Care and Use Committee (IACUC) and was performed under permits supplied by the United States Geological Survey Bird Banding Laboratory and a Scientific Collecting Permit issued by the California Natural Resources Agency, Department of Fish and Game.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by K. C. Klasing.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Walther, E.L., Carlson, J.S., Cornel, A. et al. First molecular study of prevalence and diversity of avian haemosporidia in a Central California songbird community. J Ornithol 157, 549–564 (2016). https://doi.org/10.1007/s10336-015-1301-7

Download citation

Keywords

  • Haemosporidia
  • Plasmodium homopolare
  • Cytochrome b
  • California
  • Passeriformes