Journal of Ornithology

, Volume 157, Issue 2, pp 407–418 | Cite as

Populations on the limits: survival of Svalbard rock ptarmigan

  • Sigmund Unander
  • Åshild Ø. Pedersen
  • Eeva M. Soininen
  • Sebastien Descamps
  • Maria Hörnell-Willebrand
  • Eva Fuglei
Original Article

Abstract

Predictable variation in demographic patterns among populations inhabiting extreme environments can be used to direct common management actions. Ptarmigan and other grouse are ecologically important herbivores in Arctic and alpine areas, but survival estimates are lacking for many harvested populations. This hampers more detailed assessment of how this key determinant of population growth rate is related to environmental variability and whether there is predictable between–population variation. In this article, we estimated apparent survival by age and sex of the endemic high-Arctic Svalbard rock ptarmigan (Lagopus muta hyperborea) using a 6-year mark–recapture dataset from the west coast of Spitsbergen (1980–1986). Second, we tested whether seasonal climatic variability explained temporal variation in adult survival rates. Within the Svalbard rock ptarmigan population, annual adult survival did not differ between the sexes, but varied among locations. Temporal variation in adult survival was limited and could not be explained by climatic variability. A review of inter-population comparisons of vital rates (survival and reproduction) of rock ptarmigan populations suggested that the high-Arctic, low-elevation Svalbard rock ptarmigan populations resemble their low-Arctic counterparts, and settles at the ‘low survival–high reproduction’ end of the ‘slow–fast continuum’. The demographic traits of high-Arctic ptarmigan contrast with the ‘high survival–low reproduction’ of rock ptarmigan populations at low latitudes and high elevations. Our study demonstrated that spatial variation in survival rates exists both within and between Svalbard rock ptarmigan populations. We suggest that further studies focus on ecological gradients underlying the spatial variation of life history and thus shape the population dynamics and long-term resilience.

Keywords

Climatic variability Lagopus muta hyperborea Population dynamics ‘Slow-fast-continuum’ Survival analysis 

Zusammenfassung

Populationen hart an der Grenze—das Überleben des Spitzbergen-Alpenschneehuhns ( Lagopus muta hyperborea )Vorhersagbare Veränderungen demographischer Muster bei Populationen in extremen Umgebungen könnten für die Steuerung von Management-Maßnahmen genutzt werden. Schneehühner und andere Raufußhühnerarten sind in arktischen und alpinen Regionen ökologisch wichtige Pflanzenfresser, aber es gibt praktisch keine Überlebens-Einschätzungen für viele bewirtschaftete Bestände. Diese Tatsache behindert derzeit eine detaillierte Bewertung, wie dieser für das Wachstum einer Population entscheidend wichtige Schlüsselfaktor mit der Umweltvariabilität zusammenhängt und ob es zwischen Populationen vorhersagbare Variation gibt. In unserer Arbeit schätzen wir die Überlebensrate anhand von Alter und Geschlecht von in der Hocharktis endemischen Spitzbergen-Alpenschneehühnern (Lagopus muta hyperborea); die Daten stammen aus einem Datensatz von Wiederfängen 6 Jahre nach Markierung an der Westküste von Spitzbergen (1980–1986). Darüber hinaus prüften wir, ob saisonale Klimaschwankungen zeitliche Variationen der Überlebensrate adulter Vögel erklären konnten. In dieser Alpenschneehuhn-Population gab es für die jährliche Überlebensrate keinen Unterschied zwischen den Geschlechtern, wohl aber variierte sie zwischen den unterschiedlichen Örtlichkeiten. Zeitliche Schwankungen in der Überlebensrate adulter Tiere waren begrenzt und konnten nicht mit Klimaschwankungen erklärt werden. Ein Vergleich vitaler Parameter (Überleben und Fortpflanzung) innerhalb von Populationen legte nahe, dass die hocharktische, aber in geringer Höhe lebende Alpenschneehuhn-Populationen ihren niederarktischen Artgenossen darin ähneln, dass sie auf dem „Langsam-Schnell-Kontinuum“an dem Ende liegen, an dem die Überlebensrate niedrig und der Fortpflanzungserfolg hoch ist. Die demographischen Merkmale hocharktischer Alpenschneehühner stehen im Gegensatz zum Hohes Überleben–Geringe Reproduktion“der Populationen in größerer Höhe, aber auf geringerer geographischer Breite. Unsere Studie hat gezeigt, dass es sowohl innerhalb einer Alpenschneehuhn-Population als auch zwischen unterschiedlichen Populationen räumliche Unterschiede in den Überlebensraten gibt. Wir regen weitere Untersuchungen an Alpenschneehühnern an, die sich speziell mit denjenigen ökologischen Verläufen befassen sollten, die den räumlichen Schwankungen in der Life-history zugrunde liegen und damit die Populationsdynamik und die Langzeit-Belastbarkeit der Populationen ausprägen könnten.

Notes

Acknowledgments

Funding for publishing the capture–mark–recapture Svalbard rock ptarmigan data (1980–1982 and 1984–1986) was provided by the Norwegian Polar Institute and Svalbards Miljøvernfond. Hedmark University College, Department of Forestry and Wildlife Management, and UiT The Arctic University of Norway contributed personnel for writing this publication. The fieldwork in Brøgger Peninsula and surrounding areas was funded by the Norwegian Polar Institute. Permissions for capturing ptarmigan were obtained from the governor of Svalbard, according to present regulations. The study complied with existing regulations in the 1980s regarding capture of wildlife in Svalbard. We thank Oddveig Øien Ørvoll for graphical assistance, Anders Skoglund for converting GIS files, and Brett K. Sandercock and one anonymous reviewer for a careful and constructive review.

References

  1. Badyaev AV, Ghalambor CK (2001) Evolution of life histories along elevational gradients: trade-off between parental care and fecundity. Ecology 82(10):2948–2960. doi:10.1890/0012-9658(2001)082[2948:eolhae]2.0.co;2Google Scholar
  2. Bergerud AT, Peters SS, McGrath R (1963) Determining sex and age of Willow Ptarmigan in Newfoundland. J Wildl Manage 25:337–339Google Scholar
  3. Bergerud AT, Mossop DH, Myrberget S (1985) A critique of the mechanics of annual changes in ptarmigan numbers. Can J Zool 63(10):2240–2248CrossRefGoogle Scholar
  4. Berven KA (1982) The genetic-basis of altitudinal variation in the wood frog Rana-sylvatica. 1. an experimental-analysis of life-history traits. Evolution 36(5):962–983. doi: 10.2307/2408075 CrossRefGoogle Scholar
  5. Bielby J, Mace GM, Bininda-Emonds ORP, Cardillo M, Gittleman JL, Jones KE, Purvis A (2007) The fast-slow continuum in mammalian life history: an empirical re-evaluation. Am Nat 169(6):748–757. doi: 10.1086/516847 CrossRefPubMedGoogle Scholar
  6. Chapman DS, Cornell SJ, Kunin WE (2009) Interactions between harvesting, noise and territoriality in a model of red grouse population cycles. J Anim Ecol 78(2):476–484. doi: 10.1111/j.1365-2656.2008.01496.x CrossRefPubMedGoogle Scholar
  7. Choquet R, Reboulet AM, Pradel R, Gimenez O, Lebreton JD (2003) User’s manual for U-CARE Mimeographed document, CEFE/CNRS, Montpellier (ftp://ftp.cefe.cnrs-mop.fr/biom/Soft-CR)
  8. Choquet R, Reboulet AM, Pradel R, Gimenez O, Lebreton JD (2004) M-SURGE: new software specifically designed for multistate capture recapture models. Anim Biodivers Conserv 27:207–215Google Scholar
  9. Cotter RC (1999) The reproductive biology of rock ptarmigan (Lagopus mutus) in the central Canadian Arctic. Arctic 52(1):23–32CrossRefGoogle Scholar
  10. Cotter RC, Gratto CJ (1995) Effects of nest and brood visits and radio transmitters on rock ptarmigan. J Wildl Manage 59(1):93–98. doi: 10.2307/3809120 CrossRefGoogle Scholar
  11. Cotter RC, Boag DA, Shank CC (1992) Raptor predation on rock ptarmigan (Lagopus mutus) in the central canadian arctic. J Raptor Res 26(3):146–151Google Scholar
  12. Dobson FS (1992) Body-mass, structural size, and life-history patterns of the columbian ground-squirrel. Am Nat 140(1):109–125. doi: 10.1086/285405 CrossRefPubMedGoogle Scholar
  13. Elvebakk A (1994) A survey of plant associations and alliances from Svalbard. J Veg Sci 5:791–802. doi: 10.2307/3236194 CrossRefGoogle Scholar
  14. Elvebakk A (1999) Bioclimatic delimitation and subdivision of the Arctic. In: Nordal I, Razzhivin VY (eds) The species concept in the high north—a panarctic flora initiative. Nor Vitenskapsadademi, Oslo, pp 81–112Google Scholar
  15. Førland EJ, Benestad R, Hanssen-Bauer I, Haugen JE, Skaugen TE (2012) Temperature and precipitation development at Svalbard 1900–2100. Adv Meterol 2012:1–14. doi: 10.1155/2011/893790 Google Scholar
  16. Gaillard JM, Pontier D, Allaine D, Lebreton JD, Trouvilliez J, Clobert J (1989) An analysis of demographic tactics in birds and mammals. Oikos 56(1):59–76. doi: 10.2307/3566088 CrossRefGoogle Scholar
  17. Gardarsson A (1988) Cyclic population changes and some related events in rock ptarmigan in Iceland. In: Bergerud AT, Gratson MC (eds) Adaptive strategies and population ecology of northern grouse. University of Minnnesota Press, Minneapolis, pp 300–329Google Scholar
  18. Google Earth https://www.google.com/earth/. Accessed 12 Jan 2015
  19. Griebeler EM, Bohning-Gaese K (2004) Evolution of clutch size along latitudinal gradients: revisiting Ashmole’s hypothesis. Evol Ecol Res 6(5):679–694Google Scholar
  20. Griebeler EM, Caprano T, Bohning-Gaese K (2010) Evolution of avian clutch size along latitudinal gradients: do seasonality, nest predation or breeding season length matter? J Evol Biol 23(5):888–901. doi: 10.1111/j.1420-9101.2010.01958.x CrossRefPubMedGoogle Scholar
  21. Grosbois V, Gimenez O, Gaillard JM, Pradel R, Barbraud C, Clobert J, Weimerskirch H (2008) Assessing the impact of climate variation on survival in vertebrate populations. Biol Rev 83(3):357–399. doi: 10.1111/j.1469-185X.2008.00047.x CrossRefPubMedGoogle Scholar
  22. Hansen BB et al (2013) Climate events synchronize the dynamics of a resident vertebrate community in the High Arctic. Science 339:313–315. doi: 10.1126/science.1226766 CrossRefPubMedGoogle Scholar
  23. Hille SM, Cooper CB (2015) Elevational trends in life histories: revising the pace-of-life framework. Biol Rev 90(1):204–213. doi: 10.1111/brv.12106 CrossRefPubMedGoogle Scholar
  24. Höglund N (1952) Förbundets viltmärkningar. Meddelelser 18:1–127 (Svenska Jegerforbund, Stockholm, in Swedish)Google Scholar
  25. Hornell-Willebrand M, Willebrand T, Smith AA (2014) Seasonal movements and dispersal patterns: implications for recruitment and management of Willow ptarmigan (Lagopus lagopus). J Wildl Manage 78(2):194–201. doi: 10.1002/jwmg.650 CrossRefGoogle Scholar
  26. Ims RA, Jepsen JU, Stien A, Yoccoz NG (2013) Science Plan for COAT: climate-ecological observatory for Arctic Tundra. Fram Centre, TromsøGoogle Scholar
  27. Innes DGL, Millar JS (1990) Numbers of litters, litter size and survival in 2 species of microtines at 2 elevations. Holarct Ecol 13(3):207–216Google Scholar
  28. IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. In: Core Writing Team, Pachauri RK, Meyer LA (eds) IPCC, Geneva, chap 1Google Scholar
  29. ISI Web of Science http://apps.webofknowledge.com. Accessed 12 Jan 2015
  30. Johansen BE, Karlsen SR, Tommervik H (2012) Vegetation mapping of Svalbard utilising Landsat TM/ETM plus data. Polar Rec 48(244):47–63. doi: 10.1017/s0032247411000647 CrossRefGoogle Scholar
  31. Kaler RSA, Ebbert SE, Braun CE, Sandercock BK (2010) Demography of a reintroduced population of Evermann’s Rock ptarmigan in the Aleutian islands. Wilson J Ornithol 122(1):1–14. doi: 10.1676/08-099.1 CrossRefGoogle Scholar
  32. Krementz DG, Handford P (1984) Does avian clutch size increase with altitude? Oikos 43:256–259. doi: 10.2307/3544780 CrossRefGoogle Scholar
  33. Lebreton JD, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals—a unified approach with case-studies. Ecol Monogr 62(1):67–118. doi: 10.2307/2937171 CrossRefGoogle Scholar
  34. Løvenskiold HL (1964) Avifauna Svalbardensis. Skrifter, 129. Nowegian Polar Institute, OsloGoogle Scholar
  35. Martin K, Wiebe KL (2004) Coping mechanisms of alpine and arctic breeding birds: extreme weather and limitations to reproductive resilience. Integr Comp Biol 44(2):177–185. doi: 10.1093/icb/44.2.177 CrossRefPubMedGoogle Scholar
  36. Martin K, Wilson S (2011) Ptarmigan in North America: influence of life history and environmental conditions on population persistence. In: Watson RT, Cade TJ, Fuller M, Hunt G, Potapov E (eds) Gyrfalcons and Ptarmigan in a changing world, vol I. The Peregrine Fund, Boise, pp 45–54Google Scholar
  37. McKinnon L, Smith PA, Nol E, Martin JL, Doyle FI, Abraham KF, Bety J (2010) Lower predation risk for migratory birds at high latitudes. Science 327(5963):326–327. doi: 10.1126/science.1183010 CrossRefPubMedGoogle Scholar
  38. McNamara JM, Barta Z, Wikelski M, Houston AI (2008) A theoretical investigation of the effect of latitude on avian life histories. Am Nat 172(3):331–345. doi: 10.1086/589886 CrossRefPubMedGoogle Scholar
  39. Mortensen A (1985) Survival of the fattest. PhD thesis. University of Tromsø, Tromsø, NorwayGoogle Scholar
  40. Moss R, Watson A (2001) Population cycles in birds of the grouse family (Tetraonidae). Advances in Ecol Res 32:53–111. doi: 10.1016/S0065-2504(01)32011-1 CrossRefGoogle Scholar
  41. Mossop DH (1988) Winter survival and spring breeding strategies of Willow ptarmigan. In: Gratson MC, Bergerud At (eds) Adaptive strategies and population ecology of northern grouse. University of Minnnesota Press, Minneapolis, pp 330–377Google Scholar
  42. Nordli O, Przybylak R, Ogilvie AEI, Isaksen K (2014) Long-term temperature trends and variability on Spitsbergen: the extended Svalbard Airport temperature series, 1898–2012. Polar Res 33:Art ID 21349. doi: 10.3402/polar.v33.21349
  43. Novoa C, Desmet J-F, Brenot J-F, Muffat-Joly B, Arvin-Bérod M, Resseguir J, Tran B (2011) Demographic traits of two alpine populations of rock ptarmigan. In: Sandercock BK, Martin K, Segelbacher G (eds) Ecology, conservation, and management of Grouse. University of California Press, Berkeley, pp 267–280Google Scholar
  44. Pedersen ÅØ, Jepsen JU, Yoccoz NG, Fuglei E (2007) Ecological correlates of the distribution of territorial Svalbard rock ptarmigan (Lagopus muta hyperborea). Can J Zool 85(1):122–132. doi: 10.1139/Z06-197 CrossRefGoogle Scholar
  45. Pedersen ÅØ, Bårdsen B-J, Yoccoz NG, Lecomte N, Fuglei E (2012) Monitoring Svalbard rock ptarmigan: distance sampling and occupancy modeling. J Wildl Manage 76(2):308–316. doi: 10.1002/jwmg.276 CrossRefGoogle Scholar
  46. Pedersen ÅØ, Soininen EM, Unander S, Willebrand MH, Fuglei E (2014) Experimental harvest reveals the importance of territoriality in limiting the breeding population of Svalbard rock ptarmigan. Eur J Wildl Res 60(2):201–212. doi: 10.1007/s10344-013-0766-z CrossRefGoogle Scholar
  47. Putkonen J, Roe G (2003) Rain-on-snow events impact soil temperatures and affect ungulate survival. Geophys Res Lett 30(4):Art ID 1188. doi: 10.1029/2002gl016326
  48. Ricklef RE (2000) Lack, Skutch, and Moreau: the early development of life-history thinking. Condor 102:3–8. doi: 10.1650/0010-5422(2000)102[0003:LSAMTE]2.0.CO;2 CrossRefGoogle Scholar
  49. Saether B-E, Sutherland WJ, Engen S (2004) Climate influences on avian population dynamics. Birds Clim Chang 35:85–209. doi: 10.1016/S0065-2504(04)35009-9 Google Scholar
  50. Sandercock BK (2006) Estimation of demographic parameters from live-encounter data: a summary review. J Wildl Manage 70:1504–1520. doi:10.2193/0022-541x(2006)70[1504:eodpfl]2.0.co;2Google Scholar
  51. Sandercock BK, Martin K, Hannon SJ (2005a) Demographic consequences of age-structure in extreme environments: population models for arctic and alpine ptarmigan. Oecologia 146(1):13–24CrossRefPubMedGoogle Scholar
  52. Sandercock BK, Martin K, Hannon SJ (2005b) Life history strategies in extreme environments: comparative demography of Arctic and alpine Ptarmigan. Ecology 86(8):2176–2186. doi: 10.1890/04-0563 CrossRefGoogle Scholar
  53. Sandercock BK, Nilsen EB, Broseth H, Pedersen HC (2011) Is hunting mortality additive or compensatory to natural mortality? Effects of experimental harvest on the survival and cause-specific mortality of Willow Ptarmigan. J Anim Ecol 80:244–258. doi: 10.1111/j.1365-2656.2010.01769.x CrossRefPubMedGoogle Scholar
  54. Steen JB, Unander S (1985) Breeding biology of the Svalbard rock ptarmigan Lagopus mutus hyperboreus. Ornis Scand 16:191–197. doi: 10.2307/3676630 CrossRefGoogle Scholar
  55. Storch I (2007) Grouse: status and conservation action plan 2006–2010. IUCN and Fordingbridge, UK. World Pheasant Association, GlandGoogle Scholar
  56. Suzuki A, Kobayashi A, Nakamura H, Takasu F (2013) Population viability analysis of the Japanese rock ptarmigan Lagopus muta japonica in Japan. Wildl Biol 19(4):339–346CrossRefGoogle Scholar
  57. Unander S, Steen JB (1985) Behavior and social structure in Svalbard Rock ptarmigan Lagopus mutus hyperboreus. Ornis Scand 16(3):198–204. doi: 10.2307/3676631 CrossRefGoogle Scholar
  58. van der Wal R, Stien A (2014) High arctic plants like it hot: a long term investigation of between-year variability in plant biomass across habitats and species. Ecology 95(12):3414–3427CrossRefGoogle Scholar
  59. Wang GM, Hobbs NT, Giesen KM, Galbraith H, Ojima DS, Braun CE (2002) Relationships between climate and population dynamics of white-tailed ptarmigan Lagopus leucurus in Rocky Mountain National Park, Colorado, USA. Clim Res 23(1):81–87. doi: 10.3354/cr023081 CrossRefGoogle Scholar
  60. Weeden RB (1965) Breeding densities, reproductive success, and mortality of Rock Ptarmigan at Eagle Creek, Central Alaska, from 1960 to 1964. Proc North Am Wildl Conf 30:336–348Google Scholar
  61. Wilson S (2008) Influence of environmental variation on habitat selection, life history strategies and population dynamics of sympatric ptarmigan in the southern yukon territory. PhD thesis. University of British Columbia, VancouverGoogle Scholar
  62. Wilson S, Martin K (2010) Variable reproductive effort for two ptarmigan species in response to spring weather in a northern alpine ecosystem. J Avian Biol 41(3):319–326. doi: 10.1111/j.1600-048X.2009.04945.x CrossRefGoogle Scholar
  63. Wilson S, Martin K (2011) Effect of weather and predators on nest and adult survival of rock ptarmigan in arctic Canada. In: Watson RT, Cade TJ, Fuller M, Hunt G, Potapov E (eds) Gyrfalcons and Ptarmigan in a changing world, vol I. The Peregrine Fund, Boise, p 137Google Scholar
  64. Wilson S, Martin K (2012) Influence of life history strategies on sensitivity, population growth and response to climate for sympatric alpine birds. BMC Ecol 12:Art ID 9. doi: 10.1186/1472-6785-12-9

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  • Sigmund Unander
    • 1
  • Åshild Ø. Pedersen
    • 2
  • Eeva M. Soininen
    • 3
  • Sebastien Descamps
    • 2
  • Maria Hörnell-Willebrand
    • 4
    • 5
  • Eva Fuglei
    • 2
  1. 1.BirkelandNorway
  2. 2.Fram CentreNorwegian Polar InstituteTromsøNorway
  3. 3.UiT-The Arctic University of NorwayTromsøNorway
  4. 4.Department of Forestry and Wildlife ManagementHedmark University College, Campus EvenstadElverumNorway
  5. 5.Wildlife Unit, Research and Assessment DepartmentSwedish Environmental Protection AgencyÖstersundSweden

Personalised recommendations