Advertisement

Journal of Ornithology

, Volume 157, Issue 1, pp 311–323 | Cite as

Settlement, habitat preference, reproduction, and genetic diversity in recovering the white-tailed eagle Haliaeetus albicilla population

  • Rimgaudas TreinysEmail author
  • Deivis Dementavičius
  • Saulius Rumbutis
  • Saulius Švažas
  • Dalius Butkauskas
  • Aniolas Sruoga
  • Mindaugas Dagys
Original Article

Abstract

The recovering population of white-tailed eagles Haliaeetus albicilla was studied in Lithuania, Central Europe. In the present study, we focused on (1) clarifying which theoretical distribution model better fits and describes the observed pattern of eagle settlement, (2) examining habitat preference at the level of nesting territory and its relationship with reproduction, (3) ascertaining the genetic diversity profile of the population using D-loop mtDNA. Between 1985 and 2011, the white-tailed eagle population recovered from 0 to 120 pairs and by the end of the period occupied a range of 34,000 km2. As indicated by a mean annual breeding success of 0.67, productivity 1.15, and brood size 1.73, the population reproduced well. The pattern of habitat settlement during the period of population expansion was not random as high-quality habitats were occupied first. Supporting the ideal free distribution model, reproduction was similar across nesting territories in three different habitat types, as well as between territories established in different years. The eagles preferred aquatic habitats, but these preferences were not adaptive in terms of breeding performance. Increased brood failures in later years possibly indicated the growing effect of density-dependent regulation. In total, six different haplotypes were identified in the sample of 45 individual birds. Haplotype diversity was 0.711. Phylogenetically, the Lithuanian population is most closely related to the populations of Sweden, Poland, and Germany, while similarity with Lapland, Kola, and Estonian populations was evident too. These findings indicate possible source populations directly or indirectly participating in the process of recovery of the formerly extinct Lithuanian population. Haplotypes distribution across the three habitat types in Lithuania was uneven.

Keywords

Ideal free distribution Breeding success mtDNA 

Zusammenfassung

Besiedlung, Habitat-Präferenz, Fortpflanzung und genetische Vielfalt in einer sich wiederaufbauenden Seeadler-Population ( Haliaeetus albicilla ) Die hier untersuchte, sich wieder entwickelnde Population des Seeadlers (Haliaeetus albicilla) lag in Litauen, Zentraleuropa. Wir konzentrierten uns in der Untersuchung darauf, 1) welches theoretische Verbreitungs-Modell die beobachtete Besiedlung durch die Seeadler am besten beschreibt, 2) auf eine Prüfung möglicher Habitat-Präferenzen bei den Brutplätzen und eines Zusammenhangs mit der Fortpflanzung und 3) auf eine Bestimmung des Profils der genetischen Vielfalt in dieser Population mit Hilfe der D-loop mtDNS. Zwischen 1985 und 2011 erholte sich die Seeadler-Population von Null auf 120 Paare und besetzte gegen Ende der Beobachtungszeit ein 34.000 km2 großes Gebiet. Wie der mittlere jährliche Bruterfolg von 0,67, eine Produktivität von 1,15 und eine Gelegegröße von 1,73 nahelegen, entwickelte sich die Population gut. Während der Wachstumsphase der Population verlief die Besiedlung der Habitate nicht nach einem Zufallsmuster, sondern qualitativ hochwertige Habitate wurden als erste besetzt. In Unterstützung des Modells einer freien Verbreitung war die Fortpflanzung in drei unterschiedlichen Habitat-Typen sowie in Nist-Gebieten unterschiedlicher Jahre sehr ähnlich. Die Seeadler bevorzugten aquatische Lebensräume, diese Präferenz war hinsichtlich des Fortpflanzungserfolgs jedoch nicht adaptiv. Die Zunahme von Brut-Mißerfolgen in späteren Jahren wies möglicherweise auf den wachsenden Effekt eines dichteabhängigen Regelungsmechanismus hin. Insgesamt wurden in einer Stichprobe von 45 Vögeln sechs unterschiedliche Haplotypen festgestellt, die Haplotyp-Diversität lag bei 0,711. Phylogenetisch ist die litauische Population mit denen in Schweden, Polen und Deutschland am nächsten verwandt, wobei es auch klare Ähnlichkeiten mit Populationen in Lappland, Estland und auf der Kola-Halbinsel gab. Diese Ergebnisse legen den Schluss nahe, dass bei der Erholung der früher ausgestorbenen litauischen Population Quellen-Populationen direkt oder indirekt eine Rolle spielen. Die Haplotypen waren auf die drei Habitat-Typen in Litauen ungleich verteilt.

Notes

Acknowledgments

We thank Rūta Meleckytė for assistance in genetic analysis. We are also grateful to Jos Stratford for English editing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was partly funded by the private limited company LITAGRA and the Ministry of Environment of the Republic of Lithuania.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucl Acids Res 25:4692–4693PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bai M-L, Schmidt D, Gottschalk E, Muhlenberg M (2009) Distribution pattern of an expanding Osprey (Pandion haliaetus) population in a changing environment. J Ornithol 150:255–263CrossRefGoogle Scholar
  3. Bakaloudis DE, Vlachos CG, Holloway GJ (2005) Nest spacing and breeding performance in Short toed Eagle Circaetus gallicus in northeast Greece. Bird Study 52:330–338CrossRefGoogle Scholar
  4. Beja P, Palma L (2008) Limitations of methods to test density-dependent fecundity hypothesis. J Anim Ecol 77:335–340PubMedCrossRefGoogle Scholar
  5. Bĕlka T, Horal D (2009) The White-tailed Eagle (Haliaeetus albicilla) in the Czech Republic. Denisia 77:65–77Google Scholar
  6. Brown JL (1969) Territorial behavior and population regulation in birds. Wilson Bull 81:293–329Google Scholar
  7. Butkauskas D, Švažas S, Tubelytė V, Morkūnas J, Sruoga A, Boiko D, Paulauskas A, Stanevičius V, Baublys V (2012) Coexistence and population genetic structure of the Whooper Swan Cygnus cygnus and Mute Swan Cygnus olor in Lithuania and Latvia. Cent Eur J Biol 7:886–894Google Scholar
  8. Carrete M, Donázar JA, Margalida A (2006) Density-dependent productivity depression in Pyrenean Bearded Vultures: implications for conservation. Ecol Appl 16:1674–1682PubMedCrossRefGoogle Scholar
  9. Clark RG, Shulter D (1999) Avian habitat selection: pattern from process in nest-site use by ducks? Ecology 80:272–287CrossRefGoogle Scholar
  10. Cramp S, Simmons KEL (eds) (1980) The birds of the Western Palearctic, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  11. Dementavičius D (2007) White-tailed Eagle (Haliaeetus albicilla) in Lithuania: population numbers and trends 1900–2007. Acta Zool Lituan 17:281–285CrossRefGoogle Scholar
  12. Dombrovski VC, Ivanovski VV (2005) New data on numbers and distribution of birds of prey breeding in Belarus. Acta Zool Lituan 15:218–227CrossRefGoogle Scholar
  13. Fasce P, Fasce L, Villers A, Bergese F, Bretagnole V (2011) Long-term breeding demography and density dependence in an increasing population of golden eagles Aquila chrysaetos. Ibis 153:581–591CrossRefGoogle Scholar
  14. Fernández C, Azkona P, Donázar JA (1998) Density-dependent effect on productivity in the Griffon Vulture Gyps fulvus: the role of interference and habitat heterogeneity. Ibis 140:64–69CrossRefGoogle Scholar
  15. Ferrer M, Donázar JA (1996) Density-dependent fecundity by habitat heterogeneity in an increasing population of Spanish Imperial Eagles. Ecology 77:69–74CrossRefGoogle Scholar
  16. Ferrer M, Newton I, Casado E (2006) How to test different density-dependent fecundity hypotheses in an increasing or stable population. J Anim Ecol 75:111–117PubMedCrossRefGoogle Scholar
  17. Ferrer M, Newton I, Casado E (2008) Density dependence hypotheses and the distribution of fecundity. JAnim Ecol 77:341–345CrossRefGoogle Scholar
  18. Fischer W (1959) Die Seeadler. Neue Brehm-Bücherei. A Ziemsen Verlag, WittenbergGoogle Scholar
  19. Forslund P, Pärt T (1995) Age and reproduction in birds: hypotheses and tests. Trends Ecol Evol 10:374–378PubMedCrossRefGoogle Scholar
  20. Forsman D (1999) The Raptors of Europe and the Middle East: a handbook of field identification. T & AD Poyser, LondonGoogle Scholar
  21. Fretwell SD (1972) Populations in a seasonal environment. Princeton University Press, PrincetonGoogle Scholar
  22. Fretwell SD, Lucas HL Jr (1970) On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor 19:16–36CrossRefGoogle Scholar
  23. Grünkorn T, Potiek A, Looft V, Jonker RM, Chakarov N, Krüger O (2014) Territory quality affects the relative importance of habitat heterogeneity and interference competition in a long-lived territorial songbird. J Avian Biol 45:15–21CrossRefGoogle Scholar
  24. Hailer F, Helander B, Folkestad AO, Ganusevich SA, Garstad S, Hauff P, Koren C, Nygård T, Volke V, Vilà C, Ellegren H (2006) Bottlenecked but long-lived: high genetic diversity retained in White-tailed Eagles upon recovery from population decline. Biol Lett 2:316–319PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hailer F, Helander B, Folkestad AO, Ganusevich SA, Garstad S, Hauff P, Koren C, Masterov VB, Nygård T, Rudnick JA, Shiraki S, Skarphedinsson K, Volke V, Wille F, Vilà C (2007) Phylogeography of the White-tailed Eagle, a generalist with large dispersal capacity. J Biogeogr 34:1193–1206CrossRefGoogle Scholar
  26. Hauff P (2009) Zur Geschichte des Seeadlers Haliaeetus albicilla in Deutschland. Denisia 27:7–18Google Scholar
  27. Helander B, Stjernberg T (2003) Action plan for the conservation of White-tailed Sea Eagle (Haliaeetus albicilla). BirdLife International report to the Bern Convention on the Conservation of European Wildlife and Natural Habitats, StrasbourgGoogle Scholar
  28. Helander B, Bignert A, Asplund L (2008) Using raptors as environmental sentinels: monitoring the white-tailed sea eagle Haliaeetus albicilla in Sweden. Ambio 37:425–431PubMedCrossRefGoogle Scholar
  29. Helander B, Bignert A, Herrmann Ch, Stjernberg T (2013) White-tailed Eagle productivity. HELCOM core indicator report. http://helcom.fi/Core%20Indicators/HELCOM-CoreIndicator-White-tail_Eagle_productivity.pdf. Accessed 20 Dec 2014
  30. Herrmann C, Krone O, Stjernberg T, Helander B (2014) Population development of baltic bird species: White-tailed sea Eagle (Haliaeetus albicilla). HELCOM Baltic sea environment fact sheets. http://www.helcom.fi/baltic-sea-trends/environment-fact-sheets. Accessed 20 Dec 2014
  31. Hollander FA, Van Dyck H, San Martin G, Titeux N (2011) Maladaptive habitat selection of a migratory passerine bird in a human-modified landscape. PLoS One 6:e25703PubMedPubMedCentralCrossRefGoogle Scholar
  32. Honnen AC, Hailer F, Kenntner N, Literák I, Dubská L, Zachos FE (2010) Mitochondrial DNA and nuclear microsatellites reveal high diversity and genetic structure in an avian top predator, the white-tailed sea eagle, in central Europe. Biol J Linn Soc 99:727–737CrossRefGoogle Scholar
  33. Kekkonen J, Seppä P, Hanski IK, Jensen H, Väisänen RA, Brommer JE (2011) Low genetic differentiation in a sedentary bird: house sparrow population genetics in a contiguous landscape. Heridity 106:183–190CrossRefGoogle Scholar
  34. Kollmann R, Neumann T, Struwe-Juhl B (2002) Bestand und Schutz des Seeadlers (Haliaeetus albicilla) in Deutschland und seinen Nachbarländern. Corax 19(Special Issue 1):1–14Google Scholar
  35. Kristan WB III, Johnson MD, Rotenberry JT (2007) Choices and consequences of habitat selection for birds. Condor 109:485–488CrossRefGoogle Scholar
  36. Krone O, Berger A, Schulte R (2009) Recording movement and activity pattern of a White-tailed Sea Eagle (Haliaeetus albicilla) by a GPS datalogger. J Ornithol 150:273–280CrossRefGoogle Scholar
  37. Krone O, Nadjafzadeh M, Berger A (2013) White-tailed Sea Eagles (Haliaeetus albicilla) defend small home ranges in north-east Germany throughout the year. J Ornithol 154:827–835CrossRefGoogle Scholar
  38. Krüger O (2002) Analysis of nest occupancy and nest reproduction in two sympatric raptors: common buzzard Buteo buteo and goshawk Accipiter gentilis. Ecography 25:523–532CrossRefGoogle Scholar
  39. Krüger O, Grünkorn T, Struwe-Juhl B (2010) The return of the White-tailed Eagle (Haliaeetus albicilla) to northern Germany: modelling the past to predict the future. Biol Conserv 143:710–721CrossRefGoogle Scholar
  40. Krüger O, Chakarov N, Nielsen JT, Looft V, Grünkorn T, Struwe-Juhl B, Møller AP (2012) Population regulation by habitat heterogeneity or individual adjustment? J Anim Ecol 81:330–340PubMedCrossRefGoogle Scholar
  41. Langguth T, Honnen AC, Hailer F, Mizera T, Skoric S, Väli Ü, Zachos FE (2013) Genetic structure and phylogeography of a European flagship species, the White-tailed Sea Eagle Haliaeetus albicilla. J Avian Biol 44:263–271CrossRefGoogle Scholar
  42. Literák I, Mrlík V, Hovorková A, Mikulíček P, Lengyel J, Št’astný K, Cepák J, Dubská L (2007) Origin and genetic structure of White-tailed Sea Eagles (Haliaeetus albicilla) in the Czech Republic: an analysis of breeding distribution, ringing data and DNA microsatellites. Eur J Wildlife Res 53:195–203CrossRefGoogle Scholar
  43. Lõhmus A (2001) Habitat selection in a recovering Osprey Pandion haliaetus population. Ibis 143:651–657CrossRefGoogle Scholar
  44. Lõhmus A (2004) Raptor habitat studies––state of the art. In: Chancellor RD, Meyburg B-U (eds) Raptors Worldwide. WWGBP/MME, Budapest, pp 279–296Google Scholar
  45. Mac Sharry B (2012) User manual for range tool for article 12 (birds directive) and article 17 (habitats directive). European Topic Centre on Biological Diversity, ParisGoogle Scholar
  46. Nevoux M, Gimenez O, Arlt D, Nicoll M, Jones C, Norris K (2011) Population regulation of territorial species: both site dependence and interference mechanisms matter. Proc R Soc B Biol Sci 278:2173–2181CrossRefGoogle Scholar
  47. Oehme G (2003) On the methods, terminology and criteria in population studies of the White-tailed Eagle. In: Helander B, Marquiss M, Bowerman B (eds) Sea Eagle 2000. Swedish Society for Nature Conservation, Stockholm, pp 25–26Google Scholar
  48. Pagán I, Martínez JE, Calvo JF (2009) Territorial occupancy and breeding performance in a migratory raptor do not follow ideal despotic distribution patterns. J Zool 279:36–43CrossRefGoogle Scholar
  49. Ponnikas S, Kvist L, Ollila T, Stjernberg T, Orell M (2013) Genetic structure of an endangered raptor at individual and population levels. Conserv Genet 14:1135–1147CrossRefGoogle Scholar
  50. Pulliam HR, Danielson BJ (1991) Sources, sinks, and habitat selection: a landscape perspective on population dynamics. Am Nat 137:50–66CrossRefGoogle Scholar
  51. Rodenhouse NL, Sherry TW, Holmes RT (1997) Site-dependent regulation of population size: a new synthesis. Ecology 78:2025–2042Google Scholar
  52. Rodenhouse NL, Sillett TS, Doran PJ, Holmes RT (2003) Multiple density-dependence mechanisms regulate a migratory bird population during the breeding season. Proc Roy Soc B-Biol Sci 270:2105–2110CrossRefGoogle Scholar
  53. Roques S, Negro JJ (2005) MtDNA genetic diversity and population history of a dwindling raptorial bird, the red kite (Milvus milvus). Biol Conserv 126:41–50CrossRefGoogle Scholar
  54. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  55. Sergio F, Newton I (2003) Occupancy as a measure of territory quality. J Anim Ecol 72:857–865CrossRefGoogle Scholar
  56. Sergio F, Pedrini P, Rizzolli F, Marchesi L (2006) Adaptive range selection by golden eagle in a changing landscape: a multiple modelling approach. Biol Conserv 133:32–41CrossRefGoogle Scholar
  57. Sergio F, Blas J, Forero MG, Donázar JA, Hiraldo F (2007) Sequential settlement and site dependence in a migratory raptor. Behav Ecol 18:811–821CrossRefGoogle Scholar
  58. Stjernberg T, Koivusaari J, Högmander J (2003) Population trends and breeding success of the White-tailed Sea Eagle in Finland, 1970–2000. In: Helander B, Marquiss M, Bowerman B (eds) Sea Eagle 2000. Swedish Society for Nature Conservation, Stockholm, pp 103–112Google Scholar
  59. Stjernberg T, Koivusaari J, Högmander J, Ollila T, Ekblom H (2005) Population trends and breeding success of the White-tailed Sea Egale Haliaeetus albicilla in Finland, 1970–2005. Status of raptor populations in Eastern Fennoscandia. Proceedings of workshop, Petrozavodsk, pp 151–159Google Scholar
  60. Struwe-Juhl B (2000) Funkgestützte Synchronbeobachtung—eine geeignete Methode zur Bestimmung der Aktionsräume von Großvogelarten (Ciconiidae, Haliaeetus) in der Brutzeit. Populationsökol Greifvogel Eulenarten 4:101–110Google Scholar
  61. Struwe-Juhl B, Grünkorn T (2007) Ergebnisse der Farbberingung von Seeadlern Haliaeetus albicilla in Schleswig-Holstein mit Angaben zu Ortstreue, Umsiedlung, Dispersion, Geschlechtssreife, Altersstruktur und Geschwisterverpaarung. Vogelwelt 128:117–129Google Scholar
  62. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+ C-content biases. Mol Biol Evol 9:678–687PubMedGoogle Scholar
  63. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedPubMedCentralCrossRefGoogle Scholar
  64. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680PubMedPubMedCentralCrossRefGoogle Scholar
  65. Tome D (2003) Nest site selection and predation driven despotic distribution of breeding long-eared owls Asio otus. J Avian Biol 34:150–154CrossRefGoogle Scholar
  66. Tubelytė V, Švažas S, Sruoga A, Butkauskas D, Paulauskas A, Baublys V, Viksne J, Grishanov G, Kozulin A (2011) Genetic diversity of Tufted Ducks (Aythya fuligula, Anitdae) in Eastern Europe. Cent Eur J Biol 6:1044–1053Google Scholar
  67. Vaitkus G, Juzefaitė V (2004) CORINE land cover 2000 in Lithuania. final report. Environmental Protection Agency, VilniusGoogle Scholar
  68. Väli Ü, Treinys R, Poirazidis K (2004) Genetic structure of Greater Aquila clanga and Lesser Spotted Eagle A.pomarina populations: implication for phylogeography and conservation. In: Chancellor RD, Meyburg B-U (eds) Raptors Worldwide. WWGBP/MME, Budapest, pp 473–482Google Scholar
  69. Wightman CS, Fuller MR (2006) Influence of habitat heterogeneity on distribution, occupancy patterns, and productivity of breeding peregrine falcons in central West Greenland. Condor 108:270–281CrossRefGoogle Scholar
  70. Zimmerman GS, LaHaye WS, Gutiérrez RJ (2003) Empirical support for a despotic distribution in a California Spotted Owl population. Behav Ecol 14:433–437CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  • Rimgaudas Treinys
    • 1
    • 2
    Email author
  • Deivis Dementavičius
    • 2
    • 3
  • Saulius Rumbutis
    • 2
    • 3
  • Saulius Švažas
    • 1
  • Dalius Butkauskas
    • 1
  • Aniolas Sruoga
    • 1
  • Mindaugas Dagys
    • 1
  1. 1.Nature Research CentreVilniusLithuania
  2. 2.The Foundation for the Development of Nature Protection ProjectsVilniusLithuania
  3. 3.T. Ivanauskas Zoological MuseumKaunasLithuania

Personalised recommendations