Moult migration in Bullock’s orioles (Icterus bullockii) confirmed by geolocators and stable isotope analysis

Abstract

In contrast to the majority of migratory songbirds in North America, which moult on or near their breeding grounds, the Bullock’s oriole (Icterus bullockii) is reported to stop during fall migration to moult en route to the wintering grounds. These birds seem to take advantage of food resources during the Mexican monsoon season in the Southwestern USA and Northwestern Mexico. We studied a population of Bullock’s orioles at the northern limit of their breeding range in Kamloops, British Columbia, Canada, using a combination of light-level geolocators and stable hydrogen isotope analysis. We found evidence that supports the existence of moult migration in this species, with geolocators indicating that all birds appeared to stay in the Mexican monsoon region for moult in an extended stopover period during fall migration. Feathers were isotopically enriched with deuterium compared to predicted breeding isotope values and were significantly more negative than winter-grown claws, confirming that moult occurred somewhere between the breeding and wintering grounds. Stable isotope data were consistent with complete prebasic stopover moult in adults and complete contour feather and variable tail feather moult in first-year orioles. Our results confirm that this northern population of Bullock’s orioles employs a moult migration strategy and highlight the usefulness of combining geolocator and stable isotope studies.

Zusammenfassung

Bestätigung des Mauserzugs beim Bullocktrupial ( Icterus bullockii ) mit Hilfe von Geolokatoren und stabiler Isotope

Im Gegensatz zu den meisten ziehenden Singvögeln Nordamerikas, die in oder in der Nähe ihres Brutgebiets mausern, wird über den Bullocktrupial (Icterus bullockii) berichtet, dass er auf dem Herbstzug ins Überwinterungsgebiet unterwegs einen Mauserstopp einlegt. Diese Vögel nutzen anscheinend Nahrungsressourcen im Südwesten der USA und im Nordwesten Mexikos während der mexikanischen Monsunsaison. Wir haben eine Population des Bullocktrupials am nördlichen Rand seines Brutgebiets in Kamloops in Britisch-Kolumbien, Kanada, mit Hilfe einer Kombination von Helldunkelgeolokatoren und stabiler Wasserstoffisotopenanalyse untersucht. Wir fanden Hinweise, welche die Existenz von Mauserzug bei dieser Art unterstützen; Geolokatoren zeigten an, dass alle Vögel zur Mauser offenbar in der mexikanischen Monsunregion blieben und dafür einen längeren Stopp auf dem Herbstzug einlegten. Die Federn waren im Vergleich zu den vorhergesagten Brutgebiet-Isotopenwerten mit Deuterium-Isotopen angereichert und signifikant negativer als im Winter gewachsene Krallen, was bestätigt, dass die Mauser irgendwo zwischen Brut- und Überwinterungsgebiet erfolgte. Die stabilen Isotopdaten standen mit einer kompletten Postnuptialmauser im Rastgebiet bei Adulttieren und einer kompletten Konturfeder- und variablen Schwanzfedermauser bei einjährigen Tieren im Einklang. Unsere Ergebnisse bestätigen, dass diese nördliche Population von Bullocktrupialen einen Mauserzug machen, und unterstreichen die Nützlichkeit einer Kombination von Geolokatorstudien und stabilen Isotopenanalysen.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Barta Z, McNamara JM, Houston AI, Weber TP, Hedenström A, Feŕό O (2008) Optimal moult strategies in migratory birds. Philos Trans R Soc B 363:211–229

    Article  Google Scholar 

  2. Bearhop S, Hilton GM, Votier SC, Waldron S (2004) Stable isotope ratios indicate that body condition in migrating passerines is influenced by winter habitat. Proc R Soc B 271:215–218

    Article  Google Scholar 

  3. Bowen GJ, Revenaugh J (2003) Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res 39:1299

    Google Scholar 

  4. Bridge ES, Thorup K, Bowlin MS, Chilson PB, Diehl RH, Fléron RW, Hartl P, Kays R, Kelly JF, Robinson WD (2011a) Technology on the move: recent and forthcoming innovations for tracking migratory birds. Bioscience 61:689–698

    Article  Google Scholar 

  5. Bridge ES, Fudickar AM, Kelly JF, Contina A, Rohwer S (2011b) Causes of bimodal stable isotope signatures in the feathers of a molt-migrant songbird. Can J Zool 89:951–959

    CAS  Article  Google Scholar 

  6. Butcher GS (1991) Mate choice in female northern orioles with a consideration of the role of the black male coloration in female choice. Condor 93:82–88

    Article  Google Scholar 

  7. Chambers M, David G, Ray C, Leitner B, Pyle P (2011) Habitats and conservation of molt-migrant birds in Southeastern Arizona. Southwest Nat 56:204–211

    Article  Google Scholar 

  8. Comrie AC, Glenn EC (1998) Principal components-based regionalization of precipitation regimes across the southwest United States and northern Mexico, with an application to monsoon precipitation variability. Clim Res 10:201–215

    Article  Google Scholar 

  9. Contina A, Bridge ES, Seavy NE, Duckles JM, Kelly JF (2013) Using geologgers to investigate bimodal isotope patterns in painted buntings (Passerina ciris). Auk 130:265–272

    Article  Google Scholar 

  10. de la Hera I, Díaz JA, Pérez-Tris J, Luis Tellería J (2009) A comparative study of migratory behaviour and body mass as determinants of moult duration in passerines. J Avian Biol 40:461–465

    Article  Google Scholar 

  11. Delmore KE, Fox JW, Irwin DE (2012) Dramatic intraspecific differences in migratory routes, stopover sites and wintering areas, revealed using light-level geolocators. Proc R Soc B 279:4582–4589

    PubMed  PubMed Central  Article  Google Scholar 

  12. Ethier DM, Kyle CJ, Kyser TK, Nocera JJ (2010) Variability in the growth patterns of the cornified claw sheath among vertebrates: implications for using biogeochemistry to study animal movement. Can J Zool 88:1043–1051

    Article  Google Scholar 

  13. Fudickar AM, Wikelski M, Partecke J (2011) Tracking migratory songbirds: accuracy of light-level loggers (geolocators) in forest habitats. Methods Ecol Evol 3:47–52

    Article  Google Scholar 

  14. Gonzalez-Prieto AM, Hobson KA, Bayly NJ, Gomez C (2011) Geographic origins and timing of fall migration of the veery in northern Columbia. Condor 113:860–868

    Article  Google Scholar 

  15. Hallworth MT, Studds CE, Sillett TS, Marra PP (2013) Do archival light-level geolocators and stable hydrogen isotopes provide comparable estimates of breeding-ground origin? Auk 130:273–282

    Article  Google Scholar 

  16. Heckscher CM, Taylor SM, Fox JW, Afanasyev V (2011) Veery (Catharus fuscescens) wintering locations, migratory connectivity, and a revision of its winter range using geolocator technology. Auk 128:531–542

    Article  Google Scholar 

  17. Hobson KA (2008) Isotopic methods to track animal movements. In: Hobson KA, Wassenaar LI (eds) Tracking animal migration with stable isotopes. Elsevier, London, pp 45–78

    Google Scholar 

  18. Hobson KA, Aubry Y, Wassenaar LI (2004) Migratory connectivity in Bicknell’s thrush: locating missing populations with hydrogen isotopes. Condor 106:905–909

    Article  Google Scholar 

  19. Hobson KA, Van Wilgenburg SL, Wassenaar LI, Larson K (2012) Linking hydrogen (δ2H) isotopes in feathers and precipitation: sources of variance and consequences for assignment to isoscapes. PLoS One 7:e35137

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  20. Hutto RL (1998) On the importance of stopover sites to migrating birds. Auk 115:823–825

    Article  Google Scholar 

  21. Kelly JF, Atudorei V, Sharp ZD, Finch DM (2002) Insights into Wilson’s warbler migration from analyses of hydrogen stable-isotope ratios. Oecologia 130:216–221

    Article  Google Scholar 

  22. Langin KM, Reudink MW, Marra PP, Norris DR, Kyser TK, Ratcliffe LM (2007) Hydrogen isotopic variation in migratory bird tissues of known origin: implications for geographic assignment. Oecologia 152:449–457

    PubMed  Article  Google Scholar 

  23. Leu M, Thompson CW (2002) The potential importance of migratory stopover sites as flight feather molt staging areas: a review for neotropical migrants. Biol Conserv 106:45–56

    Article  Google Scholar 

  24. Lindstrom A, Visser GH, Daan S (1993) The energetic cost of feather synthesis is proportional to basal metabolic rate. Physiol Zool 66:490–510

    Article  Google Scholar 

  25. Marra PP, Hobson KA, Holmes RT (1998) Linking winter and summer events in a migratory bird by using stable-carbon isotopes. Science 282:1884–1886

    PubMed  CAS  Article  Google Scholar 

  26. Meehan TD, Giermakowski JT, Cryan PM (2004) GIS-based model of stable hydrogen isotope ratios in North American growing-season precipitation for use in animal movement studies. Isot. Environ. Healt. S. 40:291–300

    CAS  Article  Google Scholar 

  27. Newton I (2011) Migration within the annual cycle: species, sex and age differences. –. J Ornithol 152:169–185

    Article  Google Scholar 

  28. Paxton KL, Van Riper C III, Theimer TC, Paxton EH (2007) Spatial and temporal migration patterns of Wilson’s Warbler (Wilsonia pusilla) in the Southwest as revealed by stable isotopes. Auk 124:162–175

    Article  Google Scholar 

  29. Pérez GE, Hobson KA (2007) Feather deuterium measurments reveal origins of migratory western Loggerhead Shrikes (Lanius ludovicianus excubitorides) wintering in Mexico. Divers Distrib 13:166–171

    Article  Google Scholar 

  30. Pyle P (1997) Identification guide to North American birds. Part 1: Columbidae to Ploceidae. Slate Creek Press, Point Reyes Station

    Google Scholar 

  31. Pyle P (2008) Identification guide to North American birds. Part II Anatidae to Alcidae. Slate Creek Press, Point Reyes Station

    Google Scholar 

  32. Pyle P, Leitner WA, Lozano-Angulo L, Avilez-Teran F, Swanson H, Limón EG, Chambers MK (2009) Temporal, spatial, and annual variation in the occurrence of molt-migrant passerines in the Mexican monsoon region. Condor 111:583–590

    Article  Google Scholar 

  33. Quinlan SP, Green DJ (2011) Variation in deuterium (δD) values of yellow warbler Dendroica petechia feathers grown on breeding and wintering grounds. J Ornithol 152:93–101

    Article  Google Scholar 

  34. Renfrew RB, Kim D, Perlut N, Fox J, Marra PP (2013) Phenological matching across hemispheres in a long-distance migratory bird. Divers Distrib 19:1008–1019

    Article  Google Scholar 

  35. Reudink MW, Marra PP, Kyser TK, Boag PT, Langin KM, Ratcliffe LM (2009) Non-breeding season events influence sexual selection in a long-distance migratory bird. Proc R Soc B 276:1619–1626

    PubMed  PubMed Central  Article  Google Scholar 

  36. Rising JD, Williams PL (1999) Bullock’s oriole (Icterus bullockii). In: Poole A, Gills F (eds) The birds of North America online. Cornell Lab of Ornithology, Ithaca

  37. Rohwer S, Manning J (1990) Differences in timing and number of molts for Baltimore and Bullock’s orioles: implications to hybrid fitness and theories of delayed plumage maturation. Condor 92:125–140

    Article  Google Scholar 

  38. Rohwer S, Butler LK, Froehlich DR, Greenberg R, Marra PP (2005) Ecology and demography of east–west differences in molt scheduling of Neotropical migrant passerines. In: Greenberg R, Marra PP (eds) Birds of two worlds: the ecology and evolution of migration. Johns Hopkins University Press, Baltimore, pp 87–105

    Google Scholar 

  39. Rohwer VG, Rohwer S, Ortiz-Ramirez MF (2009) Molt biology of resident and migrant birds of the monsoon region of west Mexico. Ornitologia Neotropical. 20:565–584

    Google Scholar 

  40. Rubenstein DR, Hobson KA (2004) From birds to butterflies: animal movement patterns and stable isotopes. Trends Ecol Evol 19:256–263

    PubMed  Article  Google Scholar 

  41. Ryder TB, Fox JW, Marra PP (2011) Estimating migratory connectivity of gray catbirds (Dumetella carolinensis) using geolocator and mark-recapture data. Auk. 128:448–453

    Article  Google Scholar 

  42. Smith AD, Donohue K, Dufty AM Jr (2008) Intrafeather and intraindividual variation in the stable-hydrogen isotope (δD) content of raptor feathers. Condor. 110:500–506

    Article  Google Scholar 

  43. Stutchbury BJ, Tarof SA, Done T, Gow E, Kramer PM, Tautin J, Fox JW, Afanasyev V (2009) Tracking long-distance songbird migration by using geolocators. Science 323:896–896

    PubMed  CAS  Article  Google Scholar 

  44. Svensson E, Hendenström A (1999) A phylogenetic analysis of the evolution of moult strategies in Western Palearctic warblers (Aves: Sylviidae). Biol. Jour. Linn. Soc. 67:263–276

    Article  Google Scholar 

  45. Wassenaar LI (2008) An introduction to light stable isotopes for use in terrestrial animal migration studies. In: Hobson KA, Wassenaar LI (eds) Tracking animal migration with stable isotopes. Elsevier, London, pp 21–44

    Google Scholar 

  46. Wassenaar LI, Hobson KA (2000) Stable-carbon and hydrogen isotope ratios reveal breeding origins of red-winged blackbirds. Ecol Appl 10:911–916

    Article  Google Scholar 

  47. Wassenaar LI, Hobson KA (2003) Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isot Environ Health Stud 39:211–217

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank D. Carlyle-Moses, and D. Green for insightful comments and suggestions on this manuscript. We would also like to thank S. Joly, O. Greaves, and J. Crawford for field assistance on this project and C. France for assistance with stable isotope analysis. Thank you also to the Dreger family, the owners of the Knutsford Campground and T. McLeod at Tranquille on the Lake for access to study sites and the Kamloops Naturalists Club for information on oriole locations. Funding was provided by a Natural Sciences and Engineering Research Council Discovery Grant to M. W. R. and a Natural Sciences and Engineering Research Council Canada Graduate Scholarship to A. G. P.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Reudink.

Additional information

Communicated by C. G. Guglielmo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 97 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pillar, A.G., Marra, P.P., Flood, N.J. et al. Moult migration in Bullock’s orioles (Icterus bullockii) confirmed by geolocators and stable isotope analysis. J Ornithol 157, 265–275 (2016). https://doi.org/10.1007/s10336-015-1275-5

Download citation

Keywords

  • Bullock’s oriole
  • Icterus bullockii
  • Stable isotope
  • Geolocator
  • Moult migration