Skip to main content
Log in

Ultraviolet lights do not deter songbirds at feeders

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Collision with glass windows is a leading anthropogenic cause of direct mortality for avian species and much attention has been given to developing methods to reduce the incidence of bird collisions. Little empirical research exists, however, examining the mechanisms by which birds might be deterred from human structures. We tested the efficacy of ultraviolet (UV) lights for preventing window strikes in an urban environment by measuring their deterrence effect at bird feeders at eight residential sites. We used remote cameras to count feeder visits over one winter in response to rotating treatments comprising a pulsating UV light, a light-reflecting compact disc, an unlit UV light as a novel object, and a control with no object. Using generalized linear mixed models, we showed that feeder visit rates were influenced by wind speed, site, and site–treatment interactions. The unlit novel object treatment yielded a visitation rate significantly higher than the control (p = 0.01). The UV and passive reflecting treatments slightly increased visitation above the control (p = 0.06 and p = 0.378, respectively). This suggests that novel objects may serve as an attractant in a foraging context and that this effect is stronger than any deterrence effect of UV light. The site–treatment interaction indicated that each of the four treatments produced the highest visitation rate for at least one of the sites. Rather than offer a biological explanation for this interaction, we speculate that it resulted from a spurious effect of temporal and spatial variation in bird activity that interacted with our randomized block design. Although we found no evidence that UV lights would deter urban songbirds from anthropogenic structures, their potential to attract attention may reduce the likelihood that birds fail to see and then collide with windows.

Zusammenfassung

Ultraviolettes Licht hält Vögel nicht von Futterstellen fern

Kollisionen mit Glasflächen gehören zu den häufigsten anthropogen bedingten Ursachen direkter Mortalität bei Vögeln, und die Entwicklung von Methoden zur Verringerung der Vogelschlaghäufigkeit stößt auf großes Interesse. Allerdings wurde bislang nur wenig über die Mechanismen geforscht, mittels derer sich Vögel von durch Menschen errichteten Strukturen fernhalten lassen könnten. Wir untersuchten die Wirksamkeit ultravioletter (UV) Lampen zur Vermeidung von Fensteranflügen im urbanen Bereich, indem wir deren abschreckende Wirkung an Futterstellen in acht Wohngegenden erfassten. Mithilfe ferngesteuerter Kameras zählten wir die Besuche am Futterhaus als Reaktion auf wechselnde Versuchsbedingungen, die aus einer pulsierenden UV-Lampe, einer lichtreflektierenden CD, einer ausgeschalteten UV-Lampe als unbekanntem Objekt sowie einer Kontrolle ohne Objekt bestand. Mittels Generalisierter Linearer Gemischter Modelle (GLMM,) konnten wir zeigen, dass die Besuchsraten an den Futterstellen von der Windgeschwindigkeit, dem Ort und dem Zusammenspiel von Ort und Versuchsbedingungen abhingen. Die Versuchsanordnung mit dem unbeleuchteten unbekannten Objekt erbrachte eine Besuchsrate, welche signifikant höher lag als bei der Kontrolle (p = 0,01). Bei den Versuchen mit UV-Licht beziehungsweise passiver Reflexion lagen die Besuchsraten leicht oberhalb der Kontrolle (p = 0,06 beziehungsweise p = 0,378). Dies deutet darauf hin, dass unbekannte Objekte bei der Nahrungssuche anziehend wirken können und dass dieser Effekt jede eventuelle Abschreckungswirkung des UV-Lichtes überwiegt. Die Beziehung zwischen Ort und Versuchsbedingungen ergab, dass jede der vier Versuchsanordnungen an mindestens einem Ort die höchste Besuchsfrequenz erbrachte. Anstatt eine biologische Erklärung für diese Wechselwirkungen vorzubringen, vermuten wir, dass diese von einem zufälligen Effekt zeitlicher und räumlicher Variation in der Vogelaktivität herrührten, die mit unserem randomisierten Blockkonzept interagierte. Obgleich wir keine Hinweise darauf entdeckten, dass UV-Lampen urbane Singvögel von anthropogenen Strukturen fernhalten, könnte ihr Potenzial, Aufmerksamkeit darauf zu lenken, die Wahrscheinlichkeit verringern, dass Vögel diese übersehen und dann gegen Fenster fliegen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93–110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bates DM (2010) lme4: mixed-effects modeling with R. Springer, New York

    Google Scholar 

  • Bayne EM, Scobie CA, Rawson-Clark M (2012) Factors influencing the annual risk of bird-window collisions at residential structures in Alberta, Canada. Wildl Res 39:583–592

    Article  Google Scholar 

  • Beyer HL, Haydon DT, Morales JM, Frair JL, Hebblewhite M, Mitchell M, Matthiopoulos J (2010) The interpretation of habitat preference metrics under use-availability designs. Philos Trans R Soc B Biol Sci 365:2245–2254

    Article  Google Scholar 

  • Blackwell BF, Bernhardt GE, Dolbeer RA (2002) Lasers as nonlethal avian repellents. J Wildl Management 66:250–258

    Article  Google Scholar 

  • Bolker BM (2008) Ecological models and data in R. Princeton University Press, Princeton

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Caduff D, Timpf S (2008) On the assessment of landmark salience for human navigation. Cogn Process 9:249–267

    Article  PubMed  Google Scholar 

  • Calvert AM, Bishop CA, Elliot RD, Krebs EA, Kydd TM, Machtans CS, Robertson GJ (2013) A synthesis of human-related avian mortality in Canada. Avian Conserv Ecol 8(2):11

  • Chiron F, Charge R, Julliard R, Jiguet F, Muratet A (2014) Pesticide doses, landscape structure and their relative effects on farmland birds. Agric Ecosyst Environ 185:153–160

    Article  CAS  Google Scholar 

  • Clavero M, Brotons L, Pons P, Sol D (2009) Prominent role of invasive species in avian biodiversity loss. Biol Conserv 142:2043–2049

    Article  Google Scholar 

  • Conover MR (2002) Resolving human-wildlife conflicts: the science of wildlife damage management. CRC, Boca Raton

    Google Scholar 

  • Cook A, Rushton S, Allan J, Baxter A (2008) An evaluation of techniques to control problem bird species on landfill sites. Environ Manage 41:834–843

    Article  PubMed  Google Scholar 

  • Cornelius JM, Breuner CW, Hahn TP (2010) Under a neighbour’s influence: public information affects stress hormones and behaviour of a songbird. Proc R Soc B Biol Sci 277:2399–2404

    Article  Google Scholar 

  • Coxe S, West SG, Aiken LS (2009) The analysis of count data: a gentle introduction to Poisson regression and its alternatives. J Pers Assess 91:121–136

    Article  PubMed  Google Scholar 

  • Cruz-Rivera E, Hay ME (2003) Prey nutritional quality interacts with chemical defenses to affect consumer feeding and fitness. Ecol Monogr 73:483–506

    Article  Google Scholar 

  • Cuthill IC, Partridge JC, Bennett ATD, Church SC, Hart NS, Hunt S (2000) Ultraviolet vision in birds. Adv Study Behav 29:159–214

    Article  Google Scholar 

  • Echeverría AI, Vassallo AI (2008) Novelty responses in a bird assemblage inhabiting an urban area. Ethology 114:616–624

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fernández-Juricic E, Beauchamp G, Bastain B (2007) Group-size and distance-to-neighbour effects on feeding and vigilance in brown-headed cowbirds. Anim Behav 73:771–778

    Article  Google Scholar 

  • Gelb Y, Delacretaz N (2009) Windows and vegetation: primary factors in Manhattan bird collisions. Northeast Nat 16:455–470

    Article  Google Scholar 

  • Greenberg R (2003) The role of neophobia and neophilia in the development of innovative behaviours in birds. In: Reader S, Laland K (eds) Animal innovation. Oxford University Press, Oxford, pp 175–196

    Chapter  Google Scholar 

  • Griffin AS, Lermite F, Perea M, Guez D (2013) To innovate or not: contrasting effects of social groupings on safe and risky foraging in Indian mynahs. Anim Behav 86:1291–1300

    Article  Google Scholar 

  • Hager SB, Cosentino BJ, McKay KJ, Monson C, Zuurdeeg W, Blevins B (2013) Window area and development drive spatial variation in bird-window collisions in an urban landscape. PLoS One 8(1):e53371. doi:10.1371/journal.pone.0053371

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hastad O, Odeen A (2014) A vision physiological estimation of ultraviolet window making visibility to birds. PeerJ 2:e621. doi:10.7717/peerj.621

    Article  PubMed  PubMed Central  Google Scholar 

  • Honkavaara J, Koivula M, Korpimaki E, Siitari H, Viitala J (2002) Ultraviolet vision and foraging in terrestrial vertebrates. Oikos 98:505–511

    Article  Google Scholar 

  • Horvath G, Kriska G, Malik P, Robertson B (2009) Polarized light pollution: a new kind of ecological photopollution. Front Ecol Environ 7:317–325

    Article  Google Scholar 

  • Hunt DM, Carvalho LS, Cowing JA, Davies WL (2009) Evolution and spectral tuning of visual pigments in birds and mammals. Philos Trans R Soc B Biol Sci 364:2941–2955

    Article  CAS  Google Scholar 

  • Jacobs IF, Osvath M, Osvath H, Mioduszewska B, von Bayern AMP, Kacelnik A (2014) Object caching in corvids: incidence and significance. Behav Process 102:25–32

    Article  Google Scholar 

  • Klem D (1990) Collisions between birds and windows: mortality and prevention. J Field Ornithol 61:120–128

    Google Scholar 

  • Klem D (2006) Glass: a deadly conservation issue for birds. Bird Obs 34:73–81

    Google Scholar 

  • Klem D (2009) Preventing bird-window collisions. Wilson J Ornithol 121:314–321

    Article  Google Scholar 

  • Klem D (2014) Landscape, legal, and biodiversity threats that windows pose to birds: a review of an important conservation issue. Land 3:351–361. doi:10.3390/land3010351

    Article  Google Scholar 

  • Klem D, Saenger PG (2013) Evaluating the effectiveness of select visual signals to prevent bird-window collisions. Wilson J Ornithol 125:406–411

    Article  Google Scholar 

  • Koper N, Manseau M (2012) A guide to developing resource selection functions from telemetry data using generalized estimating equations and generalized linear mixed models. Rangifer 32:195–203

    Article  Google Scholar 

  • Longcore T, Rich C, Mineau P, MacDonald B, Bert DG, Sullivan LM, Mutrie E, Gauthreaux SA Jr, Avery ML, Crawford RL, Manville AM II, Travis ER, Drake D (2012) An estimate of avian mortality at communication towers in the United States and Canada. PLoS One 7:e34025

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Loss SR, Will T, Marra PP (2013) The impact of free-ranging domestic cats on wildlife of the United States. Nat Commun 4:1396

    Article  PubMed  Google Scholar 

  • Loss SR, Will T, Loss SS, Marra PP (2014a) Bird–building collisions in the United States: estimates of annual mortality and species vulnerability. Condor 116:8–23

    Article  Google Scholar 

  • Loss SR, Will T, Marrra PP (2014b) Refining estimates of bird collision and electrocution mortality at power lines in the United States. PLoS One 9(7):e101565. doi:10.1371/jounral.pone.0101565

    Article  PubMed  PubMed Central  Google Scholar 

  • Machtans CS, Wedeles CHR, Bayne EM (2013) A first estimate for Canada of the number of birds killed by colliding with building windows. Avian Conserv Ecol 8(2):6

    Google Scholar 

  • Martin GR (2011) Understanding bird collisions with man-made objects: a sensory ecology approach. Ibis 153:239–254

    Article  Google Scholar 

  • Mullen P, Pohland G (2008) Studies on UV reflection in feathers of some 1000 bird species: are UV peaks in feathers correlated with violet-sensitive and ultraviolet-sensitive cones? Ibis 150:59–68

    Article  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  • Odeen A, Hastad O (2013) The phylogenetic distribution of ultraviolet sensitivity in birds. BMC Evol Biol 13:36. doi:10.1186/1471-2148-13-36

    Article  PubMed  PubMed Central  Google Scholar 

  • Osorio D, Miklosi A, Gonda Z (1999) Visual ecology and perception of coloration patterns by domestic chicks. Evol Ecol 13:673–689

    Article  Google Scholar 

  • Paquette D, Prescott J (1988) Use of novel objects to enhance environments of captive chimpanzees. Zoo Biol 7:15–23

    Article  Google Scholar 

  • Poot H, Ens BJ, de Vries H, Donners MAH, Wernard MR, Marquenie JM (2008) Green light for nocturnally migrating birds. Ecol Soc 13:47

    Google Scholar 

  • Railsback SF, Johnson MD (2011) Pattern-oriented modeling of bird foraging and pest control in coffee farms. Ecol Model 222:3305–3319

    Article  Google Scholar 

  • Rajchard J (2009) Ultraviolet (UV) light perception by birds: a review. Vet Med 54:351–359

    Google Scholar 

  • Rich C, Longcore T (eds) (2006) Ecological consequences of artificial night lighting. Island, Washington

    Google Scholar 

  • Ronconi RA, St Clair CC (2006) Efficacy of a radar-activated on-demand system for deterring waterfowl from oil sands tailings ponds. J Appl Ecol 43:111–119

    Article  Google Scholar 

  • Rossler M, Laube W, Weihs P (2009) Avoiding bird collisions with glass surfaces. Experimental investigations of the efficacy of markings on glass panes under natural light conditions in Flight Tunnel II (Final report, March 2007). BOKU-Met Report 10, ISSN 1994-4179 (print), ISSN 1994-4187 (online). http://www.boku.ac.at/met/report/BOKU-Met_Report_10_online.pdf

  • Schmidt V, Schaefer HM, Winkler H (2004) Conspicuousness, not colour as foraging cue in plant-animal signalling. Oikos 106:551–557

    Article  Google Scholar 

  • Seltman HJ (2014) Experimental design and analysis. Carnegie Mellon University, Pittsburgh

    Google Scholar 

  • Shapely R, Kaplan E, Purpura K (1993) Contrast sensitivity and light adaptation in photoreceptors or in the retinal network. In: Shapely R, Lam DMK (eds). Contrast sensitivity. Proceedings of the Retina Research Foundation Symposium, Vol 5, p 103–116. ISBN: 0-262-12179-4

  • Sol D, Griffin AS, Bartomeus I, Boyce H (2011) Exploring or avoiding novel food resources? The novelty conflict in an invasive bird. PLoS One 6:e19535

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Staddon JER (1993) On rate-sensitive habituation. Adapt Behav 1:421–436

    Article  Google Scholar 

  • Steensma KMM, Edworthy A, Hartline K, Wong D, Kern B, Gardner A (2009) Efficacy of bird deterrent devices in agricultural areas of the Fraser Valley of British Columbia: a pilot study. Trinity Western University, Langley

    Google Scholar 

  • Stevens GR, Clark L, RA Weber (1998) The use of aerosol repellents as an avian deterrent. Proceedings of the Eighteenth Vertebrate Pest Conference. Paper 20. University of Nebraska-Lincoln. http://digitalcommons.unl.edu/vpc18/20

  • Vahl WK, Kingma SA (2007) Food divisibility and interference competition among captive ruddy turnstones, Arenaria interpres. Anim Behav 74:1391–1401

    Article  Google Scholar 

  • Vahl WK, van der Meer J, Weissing FJ, van Dullemen D, Piersma T (2005) The mechanisms of interference competition: two experiments on foraging waders. Behav Ecol 16:845–855

    Article  Google Scholar 

  • Werner SJ, Clark L (2006) Effectiveness of a motion-activated laser hazing system for repelling captive Canada geese. Wildl Soc Bull 34:2–7

    Article  Google Scholar 

  • Wiltschko R, Wiltschko W (2009) Avian navigation. Auk 126:717–743

    Article  Google Scholar 

  • Wiltschko R, Munro U, Ford H, Stapput K, Thalau P, Wiltschko W (2014) Orientation of migratory birds under ultraviolet light. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200:399–407

    Article  PubMed  Google Scholar 

  • Zimmermann A, Stauffacher M, Langhans W, Würbel H (2001) Enrichment-dependent differences in novelty exploration in rats can be explained by habituation. Behav Brain Res 121:11–20

    Article  PubMed  CAS  Google Scholar 

  • Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We are appreciative of those who volunteered their yards for our study and who are dedicated to local conservation issues: J. Acorn, J. Clements, G. Evans, F. and E. Haley, J. Johnson, G. Pasmeny, and M. Reine. We would like to thank field and lab staff and volunteers including N. Pilfold, R. Touchie, T. Habib, and P. Gilhooly. We could not have done this study without the work of J. Yukes, who invented and supplied the UV lights. We thank Lu Carbyn and Jaynne Carr at the Wildbird General Store in Edmonton, AB, for encouraging us to study this problem and providing most of our equipment. J. Aldstadt assisted with statistics discussions and J. Pleban with manuscript review. Visiting research funding for M. Habberfield was provided by National Science Foundation award #0654305, the Ecosystem Restoration through Interdisciplinary Exchange program. This experiment was conducted in accordance with the Institutional Animal User Training Program of the Canadian Council on Animal Care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Habberfield.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by F. Bairlein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habberfield, M.W., St. Clair, C.C. Ultraviolet lights do not deter songbirds at feeders. J Ornithol 157, 239–248 (2016). https://doi.org/10.1007/s10336-015-1272-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-015-1272-8

Keywords

Navigation