Advertisement

Journal of Ornithology

, Volume 157, Issue 1, pp 189–200 | Cite as

Population abundance and trends of Saltmarsh (Ammodramus caudacutus) and Nelson’s (A. nelsoni) Sparrows: influence of sea levels and precipitation

  • W. Gregory Shriver
  • Kathleen M. O’Brien
  • Mark J. Ducey
  • Thomas P. Hodgman
Original Article

Abstract

Evidence of biological responses to climate change continues to grow. Long-term monitoring programs are critical in documenting these changes as well as identifying the primary stressors that may influence a species’ ability to adapt to changing climate. Eastern North American salt marshes support the greatest number of endemic salt marsh vertebrates globally, two of which are sympatric from southern Maine to northern Massachusetts, USA. Saltmarsh Sparrows (Ammodramus caudacutus), listed ‘vulnerable’ by the International Union for Conservation of Nature (IUCN), have a restricted global breeding range that occurs in salt marshes from Maine to Virginia, USA. Nelson’s Sparrows (Ammodramus nelsoni) breed in salt marshes from Massachusetts north to the Canadian Maritime Provinces and west to the prairie pothole regions of central Canada. These taxa hybridize in sympatry which may affect how these taxa respond to changing habitat quality and availability caused by climate change. We present the first estimates of the effects of sea level rise, breeding season precipitation, and salt marsh patch size on the abundance and population trends for three groups: (1) Saltmarsh Sparrows, (2) Nelson’s Sparrows, and (3) all Sharp-tailed Sparrows [the combined population of both species including hybrids]. We used 14 years of population monitoring data (2000–2013) from nine saltmarshes within the Rachel Carson National Wildlife Refuge, Maine, USA. We detected a declining trend for Saltmarsh Sparrow (i.e., significant decline, but not significantly more than 5 % per year), stable trends for Nelson’s Sparrows and for all Sharp-tailed Sparrows (i.e., no significant increase or decrease over the time period). Abundances for the three sparrow groups varied among years and marsh units. Drier years with relatively low mean sea levels had the greatest abundances. Breeding season precipitation negatively influenced population trends for Saltmarsh and Nelson’s Sparrows and mean sea level had a negative effect on Saltmarsh Sparrow population trends. Our results indicate that Saltmarsh Sparrow, the species most specialized to salt marshes, has declined which may be indicative of broader, regional patterns. The negative relationships of mean sea level and precipitation with Saltmarsh Sparrow population trends suggest that the negative effects of increasing nest flooding may be having demographic-level effects on this local population. Analyses of other salt marsh bird long-term monitoring programs are warranted to determine if this pattern is consistent in other portions of the Saltmarsh Sparrow range.

Keywords

Ammodramus Climate change Monitoring Nelson’s Sparrow Precipitation Population trends Saltmarsh Sparrow Sea-level rise 

Zusammenfassung

Populationsabundanz und Trends bei Spitzschwanz- ( Ammodramus caudacutus) und Nelsonammer ( A. nelsoni) : Einfluss von Meeresspiegel und Niederschlag Nachweise biologischer Reaktionen auf den Klimawandel nehmen weiter zu. Langzeit-Monitoring Programme sind von entscheidender Bedeutung, um sowohl diese Änderungen zu identifizieren, als auch die wesentlichen Stressoren, die einen Einfluss haben auf die Fähigkeit einer Art, sich an das sich verändernde Klima anzupassen. Die Salzmarschen im östlichen Nordamerika beheimaten die größte Anzahl endemischer Vertebraten in Salzmarschen weltweit. Davon sind zwei Arten sympatrisch von Süd-Maine bis ins nördliche Massachusetts, USA. Die Spitzschwanz-Ammer (Ammodramus caudacutus), von der IUCN als ‘vulnerable’ – gefährdet – eingestuft, besitzt einen weltweit eingeschränktes Brutareal in den Salzmarschen von Maine – Virginia, USA. Die Nelsonammer (A. nelsoni) brütet in Salzmarschen von Massachusetts bis nördlich in die kanadischen Seeprovinzen und westlich in die Prärie-Regionen Zentralkanadas. Diese Taxa hybridisieren in sympatrischen Gebieten, was einen Einfluss darauf haben könnte, wie diese Taxa auf sich verändernde Habitatqualität und -verfügbarkeit durch Klimawandel reagieren. Wir stellen die ersten Abschätzungen vor über die Wirkung des Anstiegs des Meeresspiegels, des Niederschlags während der Brutzeit und der Patch-Größe der Salzmarsch auf Abundanz und Populationstrends von drei Gruppen: (1) der Spitzschwanzammer, (2) der Nelsonammer und (3) beider Arten zusammen betrachtet, inklusive ihrer Hybride. Wir verwendeten Daten aus 14 Jahren Populationsmonitoring (2000–2013) in neun Salzmarschen innerhalb des Rachel Carson National Wildlife Refuge in Maine, USA. Wir fanden einen fallenden Trend für die Spitzschwanz-Ammer (d.h. eine signifikante Abnahme, aber nicht mehr als 5 % pro Jahr), stabile Trends für sowohl Nelsonammer als auch die gesamte Gruppe aus beiden Arten und Hybriden (d.h. kein signifikanter Anstieg oder Abfall im betrachteten Zeitraum). Die Abundanz für die drei Gruppen von Ammern unterschied sich von Jahr zu Jahr und von Gebiet zu Gebiet in den untersuchten Marschen. Trockenere Jahre mit relativ niedrigem mittlerem Meeresspiegel hatten die größten Abundanzen. Niederschläge während der Brutzeit beeinflussten den Populationstrend negativ für Spitzschwanz- und Nelsonammer, und die mittlere Höhe des Meeresspiegels hatte einen negativen Einfluss auf die Populationstrends der Spitzschwanzammer. Unsere Ergebnisse deuten darauf hin, dass die Spitzschwanzammer, die am meisten an Salzmarschen angepasste Art, abgenommen hat, was einen Hinweis auf weiterreichende regionale Muster geben könnte. Der negative Zusammenhang zwischen mittlerem Meeresspiegel und Niederschlag auf der einen und dem Populationstrend der Spitzschwanzammer auf der anderen Seite deutet darauf hin, dass der negative Einfluss von zunehmender Überflutung von Nestern einen demographischen Effekt habe könnte innerhalb dieser lokalen Population. Analysen aus anderen Monitoringprogrammen von Vögeln der Salzmarschen sind notwendig, um festzustellen, ob sich dieses Muster konsistent in anderen Gegenden des Verbreitungsgebiets der Salzmarsch-Ammern zeigt.

Notes

Acknowledgments

We would like to thank Jan Taylor, Graham Taylor, and Ward Feurt for providing long-term financial, administrative, logistical, and continued support for salt marsh bird monitoring at Rachel Carson NWR. Without their continued support and initiation of the project, this monitoring program would not exist. We would like to thank Marcy Putney, Nancy Williams, James Panaccione, Carlos Guindon, Brian C. Harris, Angeline Chessey, and Chris Jacques, who worked long hours in the field to collect these data and are warmly acknowledged. Funding was provided by US Fish and Wildlife Service, Region 5, Division of Natural Resources, National Wildlife Refuge System. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of US Fish and Wildlife Service.

References

  1. American Ornithologists’ Union (1995) Fortieth supplement to the American Ornithologists’ Union Check-list of North American birds. Auk 112:819–830Google Scholar
  2. Bayard TS, Elphick CS (2011) Planning for sea-level rise: quantifying patterns of Saltmarsh Sparrow (Ammodramus caudacutus) nest flooding under current sea-level conditions. Auk 128:393–403CrossRefGoogle Scholar
  3. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377PubMedPubMedCentralCrossRefGoogle Scholar
  4. BirdLife International (2012) Ammodramus caudacutus. The IUCN red list of threatened species. Version 2014.2. www.iucnredlist.org. Accessed 15 Oct 2014
  5. Bromberg KD, Bertness MD (2005) Reconstructing New England salt marsh losses using historical maps. Estuaries 28:823–832CrossRefGoogle Scholar
  6. Castro de la Guardia L, Derocher AE, Myers PG, Terwisscha van Scheltinga AD, Lunn NL (2013) Future sea ice conditions in Western Hudson Bay and consequences for polar bears in the 21st century. Glob Change Biol 19:2675–2687CrossRefGoogle Scholar
  7. Comer P, Faber-Langendoen D, Evans R et al (2003) Ecological systems of the United States: a working classification of U.S. terrestrial systems. NatureServe, ArlingtonGoogle Scholar
  8. Dahl T (2011) Status and trends of wetlands in the conterminous United States 2004–2009. US Department of the Interior; Fish and Wildlife Service, Washington, p 108Google Scholar
  9. DiQuinzio DA, Paton PWC, Eddleman WR (2002) Nesting ecology of Saltmarsh Sharp-tailed Sparrows in a tidally restricted salt marsh. Wetlands 22:179–185CrossRefGoogle Scholar
  10. Fiske IJ, Chandler RB (2011) Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. J Stat Softw 43:1–23CrossRefGoogle Scholar
  11. Gjerdrum C, Elphick CS, Rubega M (2005) Nest site selection and nesting success in saltmarsh breeding sparrows: the importance of nest habitat, timing, and study site differences. Condor 107:849–862CrossRefGoogle Scholar
  12. Greenberg R, Maldonado J, Droege S, McDonald M (2006) Tidal marshes: a global perspective on the evolution and conservation of their terrestrial vertebrates. Bioscience 56:675–685CrossRefGoogle Scholar
  13. JS Greenlaw, JD Rising (1994) Sharp-tailed Sparrow (Ammodramus caudacutus). The birds of North America No 112Google Scholar
  14. Hartman G, Kölzsch A, Larsson K, Nordberg M, Höglund J (2013) Trends and population dynamics of a Velvet Scoter (Melanitta fusca) population: influence of density dependence and winter climate. J Ornithol 154:837–847CrossRefGoogle Scholar
  15. Hodgman TP, Shriver WG, Vickery PD (2002) Redefining range overlap between the Sharp-tailed Sparrows of coastal New England. Wilson Bull 114:38–43CrossRefGoogle Scholar
  16. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  17. Johnson MD, Geupel GR (1996) The importance of productivity to the dynamics of a Swainson’s Thrush population. Condor 98:133–141CrossRefGoogle Scholar
  18. Kern RA, Shriver WG (2014) Sea level rise and prescribed fire management: implications for seaside sparrow population viability. Biol Conserv 173:24–31CrossRefGoogle Scholar
  19. Kunkel KE, Stevens LE, Stevens SE, Sun L, Janssen E, Wuebbles D, Rennells J, DeGaetano A, Dobson JG (2013) Regional climate trends and scenarios for the US National climate assessment. Part 1. Climate of the Northeast US. NAOO, Washington DC, p 79Google Scholar
  20. Li R, Xu M, Wong MHG, Qiu S, Li X, Ehrenfeld D, Li D (2015) Climate change threatens giant panda protection in the 21st century. Biol Conserv 182:93–101CrossRefGoogle Scholar
  21. Madsen T, Willcox N (2012) When it rains it pours: global warming and the increase in extreme precipitation from 1948 to 2011, vol 47. Environment America Research and Policy Center, pp 1–41Google Scholar
  22. Mearns R, Newton I (1988) Factors affecting breeding success of peregrines in South Scotland. J Anim Ecol 57:903–916CrossRefGoogle Scholar
  23. Nocera JJ, Fitzgerald TM, Hanson AR, Milton GR (2007) Differential habitat use by Acadian Nelson’s Sharp-tailed Sparrows: implications for regional conservation. J Field Ornithol 78:50–55CrossRefGoogle Scholar
  24. Olsen P, Olsen J (1989) Living with the world’s most studied raptor. Birds Int 11:23–31Google Scholar
  25. Pannekoek J, van Strien A (2005) TRIM 3 manual. Trends and indices for monitoring data. CBS, Statistics Netherlands, Voorburg. Available via www.ebcc.info
  26. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for statistical computing, ViennaGoogle Scholar
  27. Rising JD (2011) Saltmarsh Sparrow (Ammodramus caudacutus). In: del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E (eds) (2014) Handbook of the birds of the world alive. Lynx, Barcelona. http://www.hbw.com/species/saltmarsh-sparrow-ammodramus-caudacutus
  28. Rising JD, Avise J (1993) An application of genealogical concordance principles to the taxonomy and evolutionary history of the Sharp-tailed Sparrow (Ammodramus caudacutus). Auk 110:844–856CrossRefGoogle Scholar
  29. Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357PubMedCrossRefGoogle Scholar
  30. Sallenger AH, Doran KS, Howd PA (2012) Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nature Clim Change 2:884–888CrossRefGoogle Scholar
  31. Sauer JR, Hines JE, Fallon JE, Pardieck KL, Ziolkowski DJ Jr, Link WA (2011) The North American Breeding Bird Survey, results and analysis 1966–2009. Version 3.23.2011 USGS Patuxent Wildlife Research Center, Laurel MDGoogle Scholar
  32. Shriver WG, Gibbs JP (2004) Projected effects of sea-level rise on the population viability of Seaside Sparrows (Ammodramus maritimus). In: Akçakaya HR, Burgman M, Kindvall O et al (eds) Species conservation and management: case studies. Oxford University Press, Oxford, p 608Google Scholar
  33. Shriver WG, Gibbs JP, Vickery PD, Gibbs HL, Hodgman TP, Jones PT, Jacques CN (2005) Concordance between morphological and molecular markers in assessing hybridization between Sharp-tailed Sparrows in New England. Auk 122:94–107CrossRefGoogle Scholar
  34. Shriver WG, Vickery PD, Hodgman TP, Gibbs JP (2007) Flood tides affect breeding ecology of two sympatric Sharp-tailed Sparrows. Auk 124:552–560CrossRefGoogle Scholar
  35. Shriver WG, Hodgman TP, Hanson AR (2011) Nelson’s Sparrow (Ammodramus nelsoni). In: Poole A (ed) The birds of North America online. Cornell Lab of Ornithology, Ithaca. http://bna.birds.cornell.edu/bna/species/719
  36. Thibeault JM, Seth A (2014) Changing climate extremes in the Northeast United States: observations and projections from CMIP5. Clim Change 127:273–287CrossRefGoogle Scholar
  37. Thuiller W (2007) Biodiversity: climate change and the ecologist. Nature 448:550–552PubMedCrossRefGoogle Scholar
  38. Walsh J, Kovach AI, Lane OP, O’Brien KM, Babbitt KJ (2011) Genetic barcode Rflp analysis of the Nelson’s and Saltmarsh Sparrow hybrid zone. Wilson J Ornithol 123:316–322CrossRefGoogle Scholar
  39. Walsh J, Kovach AI, Babbitt KJ, O’Brien KM (2012) Fine-scale population structure and asymmetrical dispersal in an obligate Salt-Marsh passerine, the Saltmarsh Sparrow (Ammodramus caudacutus). Auk 129:247–258CrossRefGoogle Scholar
  40. Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  • W. Gregory Shriver
    • 1
  • Kathleen M. O’Brien
    • 2
  • Mark J. Ducey
    • 3
  • Thomas P. Hodgman
    • 4
  1. 1.Department of Entomology and Wildlife EcologyUniversity of DelawareNewarkUSA
  2. 2.US Fish and Wildlife ServiceRachel Carson National Wildlife RefugeWellsUSA
  3. 3.Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamUSA
  4. 4.Maine Department of Inland Fisheries and WildlifeBangorUSA

Personalised recommendations