Strong cascading effect of weather conditions on prey availability and annual breeding performance in European bee-eaters Merops apiaster

Abstract

Aerial insectivorous birds depend highly on favourable weather conditions for successful foraging because flight activity of insects is constrained by daily weather. Thus, the variation in weather conditions during reproduction, mediated by prey limitations, should be mirrored in annual reproduction performance, and finally in annual breeding success. We analysed the effect of local weather conditions on the availability of airborne insects and on the variation in brood size and nestling condition of European bee-eaters Merops apiaster at the northern edge of their range where years with adverse weather frequently occur. The availability of large flying insects, the common prey of bee-eaters, increased with air temperatures and duration of daily sunshine. As predicted, local weather conditions affected reproductive performance with annual breeding success (mean 3.7 nestlings per breeding pair, range 1.7–4.9 nestlings) being up to 32 % higher in extraordinary dry and hot summers. Additionally, a nestling's body condition (residual mass) was also affected by sunshine duration during their growth period and internally was co-affected by the number of siblings and the individual rank within the sibling hierarchy. Thus, a prolonged duration of daily sunshine causes a cascade from higher insect flight activity, and, thus, higher food availability for chick-rearing bee-eaters, which finally translates into better chick body conditions and higher annual breeding success. Consequently reproduction and population development of European bee-eaters might be especially susceptible to regional changes in weather and climatic conditions.

Zusammenfassung

Deutlicher Dominoeffekt der Witterungsbedingungen auf Nahrungsverfügbarkeit und jährliche Reproduktionsleistung beim Bienenfressern Merops apiaster Für einen erfolgreichen Nahrungserwerb sind Jäger von Fluginsekten stark von Wetterbedingungen abhängig, da die Flugaktivität der Insekten maßgeblich durch die lokale Witterung beeinflusst wird. Deshalb sollten sich Witterungsschwankungen während der Brutzeit in einer Reduktion der verfügbaren Beute und damit in der Reproduktionsleistung und dem jährlichen Bruterfolg widerspiegeln. Wir analysierten die Auswirkung der lokalen Witterungsbedingungen auf die Verfügbarkeit von Fluginsekten sowie die Brutgröße und die Kükenkondition von Bienenfressern Merops apiaster am nördlichen Rand des Verbreitungsgebiets. Die Verfügbarkeit von großen Fluginsekten, der Hauptbeute von Bienenfressern, stieg mit höheren Lufttemperaturen und längerer Sonnenscheindauer an. Die lokale Witterung schlug sich, wie erwartet in der Reproduktionsleistung nieder: in trockenen und heißen Sommern lag der Bruterfolg um 32 % höher als im 11jährigen Mittel von 3,7 Jungvögel pro Brutpaar (Spanne: 1,7-4,9 Jungvögel). Zusätzlich fanden wir einen positiven Zusammenhang zwischen der Sonnenscheindauer während der Wachstumsphase und der Körperkondition der Nestlinge. Die Kükenkondition wurde aber ebenfalls durch die Brutgröße und den individuellen Rang innerhalb der Geschwisterhierarchie beeinflusst. Folglich führte ein Dominoeffekt von längerer Sonnenscheindauer zu höherer Insektenaktivität und damit zu einem begünstigten Jagderfolg der Bienenfresser und verbesserter Versorgung der Nachkommen. Dies schlug sich letztendlich in einer besseren Körperkondition der Nestlinge und einem höheren jährlichen Bruterfolg nieder. Somit könnten die jährlichen Reproduktionsleistungen und die Populationsentwicklung von Bienenfressern in suboptimalen Teilen des Verbreitungsgebietes besonders anfällig für Änderungen der Wetter- und Klimabedingungen sein.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Arbeiter S, Schnepel H, Uhlenhaut K, Bloege Y, Schulze M, Hahn S (2014) Seasonal shift in the diet composition of European bee-eaters Merops apiaster at the northern edge of distribution. Ardeola 61:161–170

    Article  Google Scholar 

  2. Ardia DR (2006) Geographic variation in the trade-off between nestling growth rate and body condition in the tree swallow. Condor 108:601–611

    Article  Google Scholar 

  3. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4

  4. Bowden J, Dean GJW (1977) The distribution of flying insects in and near a tall hedgerow. J Appl Ecol 14:343–354

    Article  Google Scholar 

  5. Bryant DM, Tatner P (1990) Hatching asynchrony, sibling competition and siblicide in nestling birds: studies of swiftlets and bee-eaters. Anim Behav 39:657–671

    Article  Google Scholar 

  6. Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Meth Res 33:261–304

    Article  Google Scholar 

  7. Carvell C, Meek WR, Pywell RF, Goulson D, Nowakowski M (2007) Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins. J Appl Ecol 44:29–40

    Article  Google Scholar 

  8. Cucco M, Malacarne G (1996a) Effect of food availability on nestling growth and fledging success in manipulated Pallid Swift broods. J Zool 240:141–151

    Article  Google Scholar 

  9. Cucco M, Malacarne G (1996b) Reproduction of the pallid swift (Apus pallidus) in relation to weather and aerial insect abundance. Ital J Zool 63:247–253

    Article  Google Scholar 

  10. Dunn PO, Winkler DW, Whittingham LA, Hannon SJ, Robertson RJ (2011) A test of the mismatch hypothesis: how is timing of reproduction related to food abundance in an aerial insectivore? Ecology 92:450–461

    PubMed  Article  Google Scholar 

  11. Emlen ST, Wrege PH, Demong NT, Hegner RE (1991) Flexible growth rates in nestling white-fronted Bee-eaters: a possible adaptation to short-term food shortage. Condor 93:591–597

    Article  Google Scholar 

  12. Fiedler W (2009) Bird ecology as an indicator of climate and global change. In: Letcher TM (ed) Climate change: observed impacts on planet Earth. Elsevier B.V, Amsterdam, pp 181–196

    Google Scholar 

  13. Fintha I (1968) Beobachtungen über den Bienenfresser (Merops apiaster), seine Brutverhältnisse, seine Nahrung an der Szamos. Aquila 75:93–109

    Google Scholar 

  14. Flaspohler DJ (1998) A technique for sampling flying insects. J Field Ornithol 69:201–208

    Google Scholar 

  15. Fry CH (1984) The Bee-eaters (Meropidae). T. & A.D. Poyser, Calton

    Google Scholar 

  16. Gedeon K, Grüneberg C, Mitschke A, Sudfeldt C, Eikhorst W, Fischer S, Flade M, Frick S, Geiersberger I, Koop B, Kramer M, Krüger T, Roth N, Ryslavy T, Stübing S, Sudmann SR, Steffens R, Vökler F, Witt K (2014) Atlas of German breeding birds. Stiftung Vogelmonitoring Deutschland, Dachverband Deutscher Avifaunisten, Münster

    Google Scholar 

  17. Gelman A, Su YS (2013) Arm: data analysis using regression and multilevel/hierarchical models. R package version 1.6-04. http://CRAN.R-project.org/package=arm

  18. Grüebler MU, Morand M, Naef-Daenzer B (2008) A predictive model of the density of airborne insects in agricultural environments. Agr Ecosyst Environ 123:75–80

    Article  Google Scholar 

  19. Haddad NM, Tilman D, Haarstad J, Ritchie M, Knops JMH (2001) Contrasting effects of plant richness and composition on insect communities: a field experiment. Am Nat 158:17–35

    PubMed  CAS  Article  Google Scholar 

  20. Hegner RE, Emlen ST (1987) Territorial organization of the white-fronted Bee-eater in Kenya. Ethology 76:189–222

    Article  Google Scholar 

  21. Inglisa M, Galeotti P, VignaTaglianti A (1993) The diet of a coastal population of European bee-eaters (Merops apiaster) compared to prey availability (Tuscany, central Italy). Bolletino di Zoologia 60:307–310

    Article  Google Scholar 

  22. Keil D (1995) Der bienenfresser–brutvogel im landkreis hettstedt. Apus 9:1–5

    Google Scholar 

  23. Krebs JR, Avery MI (1985) Central place foraging in the European Bee-eater Merops apiaster. J Anim Ecol 54:459–472

    Article  Google Scholar 

  24. Lack D (1966) Population studies of birds. Clarendon Press, Oxford

    Google Scholar 

  25. Lessells CM (1990) Helpers at the nest in European bee-eaters: who helps and why? In: Blondel J, Gosler A, Lebreton JD, McCleery RH (eds) Population biology of passerine birds: an integrated approach. Springer, Berlin, pp 357–368

    Google Scholar 

  26. Lessells CM, Avery MI (1989) Hatching asynchrony in European bee-eaters Merops apiaster. J Anim Ecol 58:815–835

    Article  Google Scholar 

  27. Malacarne G, Cucco M, Bertolo E (1994) Sibling competition in asynchronously hatched broods of the Pallid Swift (Apus pallidus). Ethol Ecol Evol 6:293–300

    Article  Google Scholar 

  28. Martin TE (1987) Food as a limit on breeding birds: a life-history perspective. Annu Rev Ecol Syst 18:453–487

    Article  Google Scholar 

  29. McCarty JP (2001) Variation in growth of nestling tree swallows across multiple temporal and spatial scales. Auk 118:176–190

    Article  Google Scholar 

  30. Oertli S, Müller A, Dorn S (2005) Ecological and seasonal patterns in the diversity of a species-rich bee assemblage (Hymenoptera: Apoidea: Apiformes). Eur J Entomol 102:53–63

    Article  Google Scholar 

  31. Purse BV, Thompson DJ (2003) Emergence of the damselflies, Coenagrion mercuriale (Charpentier) and Ceriagrion tenellum (Villers) (Odonata: Coenagrionidae), at their northern range margins, in Britain. Eur J Entomol 100:93–99

    Article  Google Scholar 

  32. Remeš V, Martin TE (2002) Environmental influences on the evolution of growth and developmental rates in passerines. Evolution 56:2505–2518

    PubMed  Article  Google Scholar 

  33. Rupp J, Saumer F, Finkbeiner W (2011) Breeding distribution and population trend of the Bee-eater in the Southern Upper Rhine valley from 1990 to 2009. Naturschutz südl Oberrhein 6:31–42

    Google Scholar 

  34. Schulze M, Ortlieb R (2010) Bestand, Schutz und Gefährdung des Bienenfressers (Merops apiaster) in Sachsen-Anhalt. Naturschutz im Land Sachsen-Anhalt 47:3–15

    Google Scholar 

  35. Sparks TH, Tryjanowski P (2007) Patterns of spring arrival dates differ in two hirundines. Clim Res 35:159–164

    Article  Google Scholar 

  36. Stenning MJ (1996) Hatching asynchrony, brood reduction and other rapidly reproducing hypotheses. Trends Ecol Evol 11:243–246

    PubMed  CAS  Article  Google Scholar 

  37. Taylor LR (1963) An analysis of the effect of temperature on insects in flight. J Anim Ecol 32:99–117

    Article  Google Scholar 

  38. Vicens N, Bosch J (2000) Weather-dependent pollinator activity in an apple orchard, with special reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae and Apidae). Environ Entomol 29:413–420

    Article  Google Scholar 

  39. Westphal C, Steffan-Dewenter I, Tscharntke T (2003) Mass flowering crops enhance pollinator densities at a landscape scale. Ecol Lett 6:961–965

    Article  Google Scholar 

  40. Whitaker DM, Carroll AL, Montevecchi WA (2000) Elevated numbers of flying insects and insectivorous birds in riparian buffer strips. Can J Zool 78:740–747

    Article  Google Scholar 

  41. Winkler DW, Luo MK, Rakhimberdiev E (2013) Temperature effects on food supply and chick mortality in tree swallows (Tachycineta bicolor). Oecologia 173:129–138. doi:10.1007/s00442-013-2605-z

    PubMed  PubMed Central  Article  Google Scholar 

  42. Wrege PH, Emlen ST (1991) Breeding seasonality and reproductive success of white-fronted bee-eaters in Kenya. Auk 108:673–687

    Article  Google Scholar 

  43. Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Google Scholar 

Download references

Acknowledgments

We thank all enthusiasts in the field, who have fundamentally contributed to the long-term data set, F. Korner-Nievergelt for statistical advice, and K. Fischer, F. Liechti, and G. Pasinelli for valuable comments on an earlier draft of the manuscript. This study is part of the species-ringing programme coordinated by I. Todte, M. Schulze, and the Hiddensee Bird Ringing Centre, Greifswald (Germany).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Susanne Arbeiter.

Additional information

Communicated by F. Bairlein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 122 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arbeiter, S., Schulze, M., Tamm, P. et al. Strong cascading effect of weather conditions on prey availability and annual breeding performance in European bee-eaters Merops apiaster . J Ornithol 157, 155–163 (2016). https://doi.org/10.1007/s10336-015-1262-x

Download citation

Keywords

  • Aerial insectivore
  • Brood reduction
  • Insect activity
  • Sibling hierarchy
  • Weather dependence