Journal of Ornithology

, Volume 157, Issue 1, pp 145–153 | Cite as

Carotenoid profile and vitamins in the combs of the red grouse (Lagopus lagopus scoticus): implications for the honesty of a sexual signal

  • L. Pérez-Rodríguez
  • E. García- de Blas
  • J. Martínez-Padilla
  • F. Mougeot
  • R. Mateo
Original Article

Abstract

The carotenoid-based ornaments displayed by many birds often play key roles in social and sexual signalling, revealing information about individual quality. However, the proximate regulation of the honesty of sexual traits remains controversial. Understanding the mechanisms of coloured trait production and maintenance requires an accurate description of their chemical composition and of the physiological pathways involved in pigment production and deposition in the ornaments. Carotenoid-based colouration has been extensively studied in birds, but such information is often lacking for coloured integuments other than feathers, such as fleshy carotenoid-based ornaments. Here we report the carotenoid composition of the combs of the red grouse (Lagopus lagopus scoticus), a sexual trait that honestly reveals individual quality. In the present study, we also investigated blood carotenoid content, as well as associations between carotenoids, retinol and tocopherol (the active forms of vitamin A and E, respectively) within the ornament. We found that comb pigmentation was primarily the result of two red ketocarotenoids (astaxanthin and papilioerythrinone), which are synthesised from their dietary precursors (zeaxanthin and lutein) directly at the comb integument. These red ketocarotenoids are largely deposited esterified with fatty acids. Astaxanthin concentration in the comb was found to negatively correlate with retinol levels but positively correlate with tocopherol levels. Considering evidence from this and other studied species, we suggest that carotenoid esterification is a characteristic of coloured fleshy integuments, probably affecting pigment stability and colouration in living tissues, with subsequent effects on their signalling role and maintenance costs. We found little evidence that the honesty of this signal would result from a direct connection with vitamin A metabolism, as recently proposed. Rather, honest signalling via comb colouration appears more related to potential allocation trade-offs of some specific dietary precursors or to the capacity of individuals to manage the redox reactions interfering with carotenoid metabolism.

Keywords

Honest signalling Ornamentation Oxidative stress Sexual selection Tetraonid 

Zusammenfassung

Karotinoidprofil und Vitamine in den Hautlappen des Schottischen Moorschneehuhns (Lagopus lagopus scoticus): Folgen für die Ehrlichkeit eines sexuellen Signals Die Karotinoid-basierten Ornamente, die von vielen Vögeln zur Schau gestellt werden, spielen oft eine Schlüsselrolle in der sozialen und sexuellen Kommunikation und stellen Informationen über die Qualität eines Individuums bereit. Die proximate Regulierung der Ehrlichkeit sexueller Merkmale ist jedoch nach wie vor kontrovers. Um die Mechanismen der Produktion und Aufrechterhaltung farbiger Merkmale zu verstehen, ist eine genaue Beschreibung ihrer chemischen Zusammensetzung und der Stoffwechselwege, die an der Produktion der Pigmente und ihrer Einlagerung in den Ornamenten beteiligt sind, vonnöten. Karotinoid-basierte Färbung ist bei Vögeln intensiv untersucht worden, doch solche Informationen fehlen oft für farbige Integumente (mit Ausnahme von Federn), wie fleischige Karotinoid-basierte Ornamente. Hier berichten wir über die Karotinoidzusammensetzung der Hautlappen des Schottischen Moorschneehuhns (Lagopus lagopus scoticus), einem ehrlichen sexuellen Merkmal, das die individuelle Qualität anzeigt. Wir haben auch den Karotinoidgehalt im Blut untersucht, sowie die Zusammenhänge zwischen Karotinoiden, Retinol und Tocopherol (den aktiven Formen von Vitamin A bzw. E) innerhalb des Ornaments. Wir fanden heraus, dass die Pigmentierung der Hautlappen hauptsächlich auf zwei rote Ketokarotinoide (Astaxanthin und Papilioerythrinon) zurückgeht, die aus in der Nahrung vorkommenden Vorstufen (Zeaxanthin und Lutein) direkt im Hautlappen-Integument synthetisiert werden. Diese roten Ketokarotinoide werden hauptsächlich als Fettsäureester eingelagert. Die Astaxanthinkonzentration im Hautlappen korrelierte negativ mit dem Retinollevel, aber positiv mit dem Tocopherollevel. In Anbetracht von Befunden an dieser und anderen untersuchten Arten schlagen wir vor, dass die Veresterung von Karotinoiden eine Eigenschaft gefärbter fleischiger Integumente ist. Sie beeinflusst wahrscheinlich die Pigmentstabilität und die Färbung in lebenden Geweben, was wiederum deren Rolle als Signal und die energetischen Kosten ihrer Aufrechterhaltung beeinflusst. Wir haben kaum Hinweise darauf gefunden, dass die Ehrlichkeit dieses Signals aus einer direkten Verbindung mit dem Vitamin A-Stoffwechsel resultiert, wie kürzlich vorgeschlagen wurde. Vielmehr steht das ehrliche Signalisieren mittels der Hautlappenfärbung wohl damit in Zusammenhang, dass die in der Nahrung vorkommenden spezifischen Pigmentvorstufen verschiedenen Funktionen zugeteilt werden müssen, oder mit dem Vermögen von Individuen, die Redoxreaktionen zu regeln, die mit dem Karotinoidstoffwechsel interferieren.

Supplementary material

10336_2015_1261_MOESM1_ESM.docx (82 kb)
Supplementary material 1 (DOCX 81 kb)

References

  1. Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoids handbook. Birkhaüser, BaselCrossRefGoogle Scholar
  2. Casagrande S, Dijkstra C, Tagliavini J, Goerlich VC, Groothuis TG (2011) Differential effects of testosterone, dihydrotestosterone and estradiol on carotenoid deposition in an avian sexually selected signal. J Comp Physiol A 197:1–13CrossRefGoogle Scholar
  3. Czeczuga B (1979) Carotenoids in the skin of certain species of birds. Comp Biochem Physiol B 62:107–109Google Scholar
  4. del Val E, Senar JC, Garrido-Fernandez J, Jaren M, Borras A, Cabrera J, Negro JJ (2009) The liver but not the skin is the site for conversion of a red carotenoid in a passerine bird. Naturwissenschaften 96:797–801PubMedCrossRefGoogle Scholar
  5. Egeland ES, Parker H, Liaaen-Jensen S (1993) Carotenoids in combs of capercaillie (Tetrao urogallus) fed defined diets. Poult Sci 72:747–751CrossRefGoogle Scholar
  6. Garcia-de Blas E, Mateo R, Vinuela J, Pérez-Rodríguez L, Alonso-Alvarez C (2013) Free and esterified carotenoids in ornaments of an avian species: the relationship to color expression and sources of variability. Physiol Biochem Zool 86:483–498PubMedCrossRefGoogle Scholar
  7. Garcia-de Blas E, Mateo R, Guzman Bernardo FJ, Rodriguez Martin-Doimeadios RC, Alonso-Alvarez C (2014) Astaxanthin and papilioerythrinone in the skin of birds: a chromatic convergence of two metabolic routes with different precursors? Naturwissenschaften 177:259–271Google Scholar
  8. Garcia-de Blas E, Mateo R, Alonso-Alvarez C (2015) Accumulation of dietary carotenoids, retinoids and tocopherol in the internal tissues of a bird: a hypothesis for the cost of producing colored ornaments. Oecologia 177:259–271PubMedCrossRefGoogle Scholar
  9. Goodwin TW (1984) The Biochemistry of Carotenoids, Vol. 2 Animals. 2nd edn, LondonGoogle Scholar
  10. Hill GE (1996) Redness as a measure of the production cost of ornamental coloration. Ethol Ecol Evol 8:157–175CrossRefGoogle Scholar
  11. Hill GE (2000) Energetic constraints on expression of carotenoid-based plumage coloration. J Avian Biol 31:559–566CrossRefGoogle Scholar
  12. Hill GE (2011) Condition-dependent traits as signals of the functionality of vital cellular processes. Ecol Lett 14:625–634PubMedCrossRefGoogle Scholar
  13. Hill GE (2014) Cellular Respiration: the nexus of stress, condition, and ornamentation. Integr Comp Biol 54:645–657PubMedCrossRefGoogle Scholar
  14. Hill GE, Johnson JD (2012) The vitamin A-redox hypothesis: a biochemical basis for honest signaling via carotenoid pigmentation. Am Nat 180:E127–E150PubMedCrossRefGoogle Scholar
  15. Hill GE, McGraw KJ (2006) Bird Coloration, Vol. 2. Function and evolution. Harvard University Press, CambridgeGoogle Scholar
  16. Hsu WJ, Rodríguez DB, Chichester CO (1972) The biosynthesis of astaxanthin. VI. the conversion of [14c]lutein and [14c] β-carotene in goldfish International. J Biochem 3:333–338Google Scholar
  17. Johnson JD, Hill GE (2013) Is carotenoid ornamentation linked to the inner mitochondria membrane potential? A hypothesis for the maintenance of signal honesty. Biochimie 95:436–444PubMedCrossRefGoogle Scholar
  18. LaFountain AM, Frank HA, Prum RO (2013) Carotenoids from the crimson and maroon plumages of Old World orioles (Oriolidae). Arch Biochem Biophys 539:126–132PubMedCrossRefGoogle Scholar
  19. Lozano GA (1994) Carotenoids, parasites, and sexual selection. Oikos 70:309–311CrossRefGoogle Scholar
  20. Martinez-Padilla J, Mougeot F, Pérez-Rodríguez L, Bortolotti GR (2007) Nematode parasites reduce carotenoid-based signalling in male red grouse. Biol Lett 3:161–164PubMedPubMedCentralCrossRefGoogle Scholar
  21. Martinez-Padilla J, Mougeot F, Webster LM, Pérez-Rodríguez L, Piertney SB (2010) Testing the interactive effects of testosterone and parasites on carotenoid-based ornamentation in a wild bird. J Evol Biol 23:902–913PubMedCrossRefGoogle Scholar
  22. Martinez-Padilla J, Pérez-Rodríguez L, Mougeot F, Ludwig S, Redpath SM (2014) Intra-sexual competition alters the relationship between testosterone and ornament expression in a wild territorial bird. Horm Behav 65:435–444PubMedCrossRefGoogle Scholar
  23. McGraw KJ (2004) Colorful songbirds metabolize carotenoids at the integument. J Avian Biol 35:471–476CrossRefGoogle Scholar
  24. McGraw KJ (2006) Mechanics of carotenoid-based coloration. In: Hill GE, McGraw KJ (eds) Bird Coloration vol. 1: mechanisms and measurements, vol. 1: mechanisms and measurements. Harvard University Press, CambridgeGoogle Scholar
  25. McGraw KJ (2009) Identifying anatomical sites of carotenoid metabolism in birds. Naturwissenschaften 96:987–988PubMedCrossRefGoogle Scholar
  26. McGraw KJ, Nolan PM, Crino OL (2006) Carotenoid accumulation strategies for becoming a colourful House Finch: analyses of plasma and liver pigments in wild moulting birds. Funct Ecol 20:678–688CrossRefGoogle Scholar
  27. Mendes-Pinto MM, LaFountain AM, Stoddard MC, Prum RO, Frank HA, Robert B (2012) Variation in carotenoid-protein interaction in bird feathers produces novel plumage coloration. J R Soc Int 9:3338–3350CrossRefGoogle Scholar
  28. Mougeot F (2008) Ornamental comb colour predicts T-cell-mediated immunity in male red grouse Lagopus lagopus scoticus. Naturwissenschaften 95:125–132PubMedCrossRefGoogle Scholar
  29. Mougeot F, Martínez-Padilla J, Pérez-Rodríguez L, Bortolotti GR (2006) Carotenoid-based colouration and ultraviolet reflectance of the sexual ornaments of grouse. Behav Ecol Sociobiol 61:741–751CrossRefGoogle Scholar
  30. Mougeot F, Pérez-Rodríguez L, Martínez-Padilla J, Leckie F, Redpath SM (2007) Parasites, testosterone and honest carotenoid-based signalling of health. Funct Ecol 21:886–898CrossRefGoogle Scholar
  31. Perez-Galvez A, Minguez-Mosquera MI (2005) Esterification of xanthophylls and its effect on chemical behavior and bioavailability of carotenoids in the human. Nutr Res 25:631–640CrossRefGoogle Scholar
  32. Pérez-Rodríguez L (2009) Carotenoids in evolutionary ecology: re-evaluating the antioxidant role. BioEssays 31:1116–1126PubMedCrossRefGoogle Scholar
  33. Pérez-Rodríguez L (2008) Carotenoid-based ornamentation as a dynamic but consistent individual trait. Behav Ecol Sociobiol 62:995–1005CrossRefGoogle Scholar
  34. Pérez-Rodríguez L, Vinuela J (2008) Carotenoid-based bill and eye ring coloration as honest signals of condition: an experimental test in the red-legged partridge (Alectoris rufa). Naturwissenschaften 95:821–830PubMedCrossRefGoogle Scholar
  35. Pérez-Rodríguez L, Martinez-Padilla J, Mougeot F (2013) Carotenoid-based ornaments as signals of health status in birds: evidences from two galliform species, the red-legged partridge (Alectoris rufa) and the red grouse (Lagopus lagopus scoticus). In: Yamaguchi M (ed) Carotenoids: food sources, production and health benefits. Nova Science Publishers, New YorkGoogle Scholar
  36. Pike TW, Bjerkeng B, Blount JD, Lindström J, Metcalfe NB (2011) How integument colour reflects its carotenoid content: a stickleback’s perspective. Funct Ecol 25:297–304CrossRefGoogle Scholar
  37. Pintea A, Diehl HA, Momeu C, Aberle L, Socaciu C (2005) Incorporation of carotenoid esters into liposomes. Biophys Chem 118:7–14PubMedCrossRefGoogle Scholar
  38. Prager M, Johansson EIA, Andersson S (2009) Differential ability of carotenoid C4-oxygenation in yellow and red bishop species (Euplectes spp.). Comp Biochem Physiol B 154:373–380PubMedCrossRefGoogle Scholar
  39. Prum RO, LaFountain AM, Berro J, Stoddard MC, Frank HA (2012) Molecular diversity, metabolic transformation, and evolution of carotenoid feather pigments in cotingas (Aves: Cotingidae). J Comp Physiol B 182:1095–1116PubMedCrossRefGoogle Scholar
  40. Rao AR, Sarada R, Ravishankar GA (2007) Stabilization of astaxanthin in edible oils and its use as an antioxidant. J Sci Food Agric 87:957–965CrossRefGoogle Scholar
  41. San-Jose LM, Granado-Lorencio F, Fitze PS (2012) Vitamin E, vitamin A, and carotenoids in male common lizzard tissues. Herpetologica 68:88–99CrossRefGoogle Scholar
  42. Simons MJ, Cohen AA, Verhulst S (2012) What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds—a meta-analysis. PLoS ONE 7:e43088PubMedPubMedCentralCrossRefGoogle Scholar
  43. Stradi R (1998) The colour of flight: carotenoids in bird plumage. Solei Gruppo Editoriale Informatico, MilanGoogle Scholar
  44. Stradi R, Pini E, Celentano G (2001) Carotenoids in bird plumage: the complement of red pigments in the plumage of wild and captive bullfinch (Pyrrhula pyrrhula). Comp Biochem Physiol B 128:529–535PubMedCrossRefGoogle Scholar
  45. Subagio A, Wakaki H, Morita N (1999) Stability of lutein and its myristate esters. Biosci Biotechnol Biochem 63:1784–1786PubMedCrossRefGoogle Scholar
  46. von Schantz T, Bensch S, Grahn M, Hasselquist D, Wittzell H (1999) Good genes, oxidative stress and condition-dependent sexual signals. Proc R Soc B-Biol Sci 266:1–12CrossRefGoogle Scholar
  47. Watson A, Moss R (2008) Grouse. Collins, LondonGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  • L. Pérez-Rodríguez
    • 1
  • E. García- de Blas
    • 2
  • J. Martínez-Padilla
    • 1
  • F. Mougeot
    • 2
    • 3
  • R. Mateo
    • 2
  1. 1.Estación Biológica de Doñana(EBD-CSIC)SevilleSpain
  2. 2.Instituto de Investigación en Recursos Cinegéticos(IREC-CSIC, UCLM, JCCM)Ciudad RealSpain
  3. 3.Estación Experimental de Zonas Áridas (EEZA-CSIC)AlmeríaSpain

Personalised recommendations