Journal of Ornithology

, Volume 157, Issue 1, pp 109–116 | Cite as

A striking case of deceptive woodpecker colouration: the threatened Helmeted Woodpecker Dryocopus galeatus belongs in the genus Celeus

  • Martjan Lammertink
  • Cecilia Kopuchian
  • Hanja B. Brandl
  • Pablo L. Tubaro
  • Hans Winkler
Original Article


The Helmeted Woodpecker Dryocopus galeatus is a threatened species of the Atlantic Forest in southeastern South America. It has traditionally been placed in the genus Dryocopus, but it shows similarities in plumage and structure with woodpeckers in the genus Celeus. We sequenced mitochondrial and nuclear DNA that was sampled from live captured Helmeted Woodpeckers. We found that the Helmeted Woodpecker has a phylogenetic position embedded within the genus Celeus, and recommend its taxonomic treatment as Celeus galeatus. The Helmeted Woodpecker belongs to a clade within Celeus that includes Kaempfer’s Woodpecker C. obrieni, Rufous-headed Woodpecker C. spectabilis, and Cream-coloured Woodpecker C. flavus. It has the southernmost distribution range of the woodpeckers in this clade. The Helmeted Woodpecker is sympatric throughout its range with Lineated Woodpecker Dryocopus lineatus and Robust Woodpecker Campephilus robustus and these species from three different genera show a remarkable convergence in plumage colours and patterns. With the inclusion of Helmeted Woodpecker in Celeus, this genus has four out of 15 species on the International Union for Conservation of Nature (IUCN) red list, a higher proportion of red listed species than in the woodpecker family overall.


Picidae Molecular phylogeny Atlantic Forest Threatened bird Plumage convergence Mimicry 


Ein Fall verblüffend irreführender Spechtfärbung: der bedrohte Wellenohrspecht Dryocopus galeatus ist ein Celeus Der Wellenohrspecht ist eine bedrohte Spechtart der atlantischen Wälder im Südosten Südamerikas. Er wurde traditionellerweise in das Genus Dryocopus eingeordnet, weist aber in Gefieder und Struktur Ähnlichkeiten zur Gattung Celeus auf. Wir sequenzierten mitochondriale und nukleare DNA aus Proben, die lebend gefangenen Individuen entnommen worden waren. Wir fanden heraus, dass der Wellenohrspecht phylogenetisch innerhalb der Gattung Celeus positioniert ist und empfehlen, ihn in dieses Genus zu klassifizieren. Dieser Specht gehört zu einer Stammlinie innerhalb von Celeus, die den Kaempferspecht Celeus obrieni, Zimtkopfspecht C. spectabilis und den Strohspecht C. flavus enthält. Er stellt den südlichsten Vertreter dieser Gruppe dar. Sein Verbreitungsgebiet deckt sich mit jenen des Linienspechts Dryocopus lineatus und des Scharlachkopfspechts Campephilus robustus und diese drei Arten aus verschiedenen Genera weisen eine bemerkenswerte Konvergenz in Gefiederfärbung und -muster auf. Zusammen mit dem Wellenohrspecht beinhaltet die 15 Arten zählende Gattung Celeus vier auf der Roten Liste der IUCN stehende Arten, mehr als der Durchschnitt der Familie.



We thank Ministerio de Ecología of Misiones province, Arauco Argentina (formerly Alto Paraná S. A.) and Fundación Bosques Nativos Argentinos for research and collection permits. Cecilia Kopuchian and Pablo Tubaro thank Centro de Investigaciones Antonia Ramos (CIAR) in Oberá, Misiones, for access. The Cornell Lab of Ornithology, National Geographic, and W.C. Hunter supported fieldwork. Grants from CONICET, ANPCyT and IDRC Canada supported laboratory work. Carlos Ferreyra, Juan Klavins, and Natalia García assisted in captures of Helmeted Woodpeckers. Hans Winkler especially acknowledges the generous support provided by the Department of Integrative Biology and Evolution.

Supplementary material

10336_2015_1254_MOESM1_ESM.docx (487 kb)
Supplementary material 1 (DOCX 486 kb)


  1. Anisimova M, Gil M, Dufayard JFO, Dessimoz C, Gascuel O (2011) Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol 60:685–699PubMedPubMedCentralCrossRefGoogle Scholar
  2. Benz BW, Robbins MB (2011) Molecular phylogenetics, vocalizations, and species limits in Celeus woodpeckers (Aves: Picidae). Mol Phylogenet Evol 61:29–44PubMedCrossRefGoogle Scholar
  3. Benz BW, Robbins MB, Peterson AT (2006) Evolutionary history of woodpeckers and allies (Aves: Picidae): placing key taxa on the phylogenetic tree. Mol Phylogenet Evol 40(2):389–399PubMedCrossRefGoogle Scholar
  4. Bertoni A de W (1901) Aves nuevas del Paraguay. Talleres Nacionales, AsunciónGoogle Scholar
  5. BirdLife International (2015) IUCN red list for birds. Accessed 6 Jan 2015
  6. Bodrati A, Cockle K (2006) Habitat, distribution, and conservation of Atlantic Forest birds in Argentina: notes on nine rare or threatened species. Ornitol Neotrop 17:243–258Google Scholar
  7. Brooks TM, Barnes R, Bartrina L, Butchart SHM, Clay RP, Esquivel EZ, Etcheverry NI, Lowen JC, Vincent J (1993) Bird surveys and conservation in the Paraguayan Atlantic Forest: Project CANOPY’92 final report. Study Report Number 57. BirdLife International, Cambridge, UKGoogle Scholar
  8. Chebez JC (1995) Nuevos datos sobre Dryocopus galeatus (Piciformes: Picidae) en Argentina. Hornero 14:55–57Google Scholar
  9. Cockle KL (2010) Interspecific cavity-sharing between a Helmeted Woodpecker (Dryocopus galeatus) and two White-eyed Parakeets (Aratinga leucophthalma). Wilson J Ornithol 122:803–806CrossRefGoogle Scholar
  10. Cody ML (1969) Convergent characteristics in sympatric species: a possible relation to interspecific competition and aggression. Condor 71:222–239CrossRefGoogle Scholar
  11. Cody ML (1973) Character convergence. Annu Rev Ecol Syst 4:189–211CrossRefGoogle Scholar
  12. Collar NJ, Gonzaga LP, Krabbe N, Madroño Nieto A, Naranjo LG, Parker TA, Wege DC (1992) Threatened birds of the Americas: the ICBP/IUCN Red Data Book. International Council for Bird Preservation, CambridgeGoogle Scholar
  13. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Meth 9:772CrossRefGoogle Scholar
  14. de Sousa Azevedo L, Aleixo A, Santos MP, Sampaio I, Schneider H, Vallinoto M, do Rêgo PS (2013) New molecular evidence supports the species status of Kaempfer’s woodpecker (Aves, Picidae). Genet Mol Biol 36:192–200CrossRefGoogle Scholar
  15. del Hoyo J, Collar NJ (2014) Illustrated checklist of the birds of the world: Non-passerines, vol 1. Lynx Edicions, BarcelonaGoogle Scholar
  16. Diamond JM (1994) Two-faced mimicry. Nature 367:683–684CrossRefGoogle Scholar
  17. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113PubMedPubMedCentralCrossRefGoogle Scholar
  18. Fuchs J, Ohlson JI, Ericson PGP, Pasquet E (2007) Synchronous intercontinental splits between assemblages of woodpeckers suggested by molecular data. Zool Scripta 36:11–25CrossRefGoogle Scholar
  19. Fuchs J, Pons J-M, Ericson PGP, Bonillo C, Couloux A, Pasquet E (2008) Molecular support for a rapid cladogenesis of the woodpecker clade Malarpicini, with further insights into the genus Picus (Piciformes: Picinae). Mol Phylogenetics Evol 48:34–46CrossRefGoogle Scholar
  20. Fuchs J, Pons J-M, Liu L, Ericson PGP, Couloux A, Pasquet E (2013) A multi-locus phylogeny suggests an ancient hybridization event between Campephilus and melanerpine woodpeckers (Aves: Picidae). Mol Phylogenetics Evol 67:578–588CrossRefGoogle Scholar
  21. Giebel CGA (1877) Thesaurus ornithologiae: Repertorium der gesammten ornithologischen Literatur und Nomenclator sämmtlicher Gattungen und Arten der Vögel, nebst Synonymen und geographischer Verbreitung, vol 3. Brockhaus, Leipzig [1872–1877] Google Scholar
  22. Gorman G (2014) Woodpeckers of the world. The complete guide. Helm, LondonGoogle Scholar
  23. Gray GR (1845) The genera of birds: comprising their generic characters, a notice of the habits of each genus, and an extensive list of species referred to their several genera, vol 2. Longman, Brown, Green and Longmans, London, pp 1844–1849Google Scholar
  24. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321PubMedCrossRefGoogle Scholar
  25. Kerr KCR, Lijtmaer DA, Barreira AS, Hebert PDN, Tubaro PL (2009) Probing evolutionary patterns in neotropical birds through DNA barcodes. PLoS One 4:e4379. doi: 10.1371/journal.pone.0004379 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Klicka J, Johnson KP, Lanyon SM (2000) New world nine-primaried oscine relationships: constructing a mitochondrial DNA framework. Auk 117:321–336CrossRefGoogle Scholar
  27. Kratter AW (1998) The nests of two bamboo specialists: Celeus spectabilis and Cercomacra manu. J Field Ornithol 69:37–44Google Scholar
  28. Lammertink M (2007) Community ecology and logging responses of Southeast Asian woodpeckers (Picidae, Aves). Dissertation, Universiteit van AmsterdamGoogle Scholar
  29. Lammertink M, Klavins J (2012) Nest and fledgling of Helmeted Woodpecker (Dryocopus galeatus). Ornitol Neotrop 23:455–460Google Scholar
  30. Lammertink M, Cockle KL, Bodrati A, Santos REF (2012) Helmeted Woodpecker (Dryocopus galeatus). In: Schulenberg TS (ed) Neotropical birds online. Cornell Lab of Ornithology, IthacaGoogle Scholar
  31. Leite GA, Pinheiro RT, Marcelino DG, Figueira JEC, Delabie JHC (2013) Foraging behavior of Kaempfer’s woodpecker (Celeus obrieni), a bamboo specialist. Condor 115:221–229CrossRefGoogle Scholar
  32. Moore WS, Overton LC, Miglia KJ (2011) Mitochondrial DNA based phylogeny of the woodpecker genera Colaptes and Piculus, and implications for the history of woodpecker diversification in South America. Mol Phylogenet Evol 58:76–84PubMedCrossRefGoogle Scholar
  33. Peters JL (1948) Check-list of birds of the world, vol 6. Museum of Comparative Zoology, CambridgeGoogle Scholar
  34. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  35. Prum RO (2014) Interspecific social dominance mimicry in birds. Zool J Linn Soci 172:910–941CrossRefGoogle Scholar
  36. Prum RO, Samuelson L (2012) Evolution of interspecific social dominance mimicry modeled by the ‘Hairy-Downy’ game. J Theor Biol 313:42–60PubMedCrossRefGoogle Scholar
  37. Prychitko TM, Moore WS (1997) The utility of DNA sequences of an intron from the β-fibrinogen gene in phylogenetic analysis of woodpeckers (Aves: Picidae). Mol Phylogenetics Evol 8:193–204CrossRefGoogle Scholar
  38. Rainey MM, Grether GF (2007) Competitive mimicry: synthesis of a neglected class of mimetic relationships. Ecology 88:2440–2448PubMedCrossRefGoogle Scholar
  39. Rambaut A, Drummond AJ (2009) Tracer v1.5.0.—Available from
  40. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542PubMedPubMedCentralCrossRefGoogle Scholar
  41. Santos REF (2008) Dryocopus galeatus (Temminck, 1822): registro documentado e novas informações para o Vale do Rio Itajaí, Santa Catarina, Brasil. Atualidades Ornitológicas 143:20–23Google Scholar
  42. Short LL (1982) Woodpeckers of the world. Delaware Museum of Natural History, GreenvilleGoogle Scholar
  43. Sibley CG, Monroe BL (1990) Distribution and taxonomy of birds of the world. Yale University Press, New HavenGoogle Scholar
  44. Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phylogenetics Evol 12:105–114CrossRefGoogle Scholar
  45. Terborgh J, Fitzpatrick JW, Emmons L (1984) Annotated checklist of bird and mammal species of Cocha Cashu Biological Station, Manu National Park, Peru. Field Museum of Natural History, ChicagoGoogle Scholar
  46. van Dongen WFD, White J, Brandl HB, Moodley Y, Merkling T, Leclaire S, Pierrick B, Danchin E, Hatch SA, Wagner RH (2013) Age-related differences in the cloacal microbiota of a wild bird species. BMC Ecol 13:11PubMedPubMedCentralCrossRefGoogle Scholar
  47. Webb DM, Moore WS (2005) A phylogenetic analysis of woodpeckers and their allies using 12S, Cyt b, and COI nucleotide sequences (class Aves; order Piciformes). Mol Phylogenetics Evol 36:233–248CrossRefGoogle Scholar
  48. Weibel AC, Moore WS (2002a) Molecular phylogeny of a cosmopolitan group of woodpeckers (genus Picoides) based on COI and cyt b mitocondrial gene sequences. Mol Phylogenetics Evol 22:65–75CrossRefGoogle Scholar
  49. Weibel AC, Moore WS (2002b) A test of a mitocondrial gene-based phylogeny of woodpeckers (genus Picoides) using an independent nuclear gene, β-fibrinogen Intron 7. Mol Phylogenetics Evol 22:247–257CrossRefGoogle Scholar
  50. Winkler H, Christie DA (2002) Family Picidae (woodpeckers). In: del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world, vol 7. Lynx, Barcelona, pp 296–555Google Scholar
  51. Winkler H, Christie DA, Nurney D (1994) The colourful world of woodpeckers: an oriental perspective. OBC Bull 19:30–33Google Scholar
  52. Winkler H, Christie DA, Nurney D (1995) Woodpeckers—a guide to the woodpeckers, piculets and wrynecks of the world. Pica Press, SussexGoogle Scholar
  53. Winkler H, Gamauf A, Nittinger F, Haring E (2014) Relationships of Old World woodpeckers (Aves: Picidae)—new insights and taxonomic implications. Ann Nat Hist Mus Wien B 116:69–86Google Scholar
  54. Zimmer KJ, Hilty SL (1997) Avifauna of a locality in the upper Orinoco drainage of Amazonas, Venezuela. Ornithol Monogr 48:865–885CrossRefGoogle Scholar
  55. Zimmer KJ, Parker TA III, Isler ML, Isler PR (1997) Survey of a Southern Amazonian avifauna: the Alta Floresta region, Mato Grosso, Brazil. Ornithol Monogr 48:887–918CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  • Martjan Lammertink
    • 1
    • 2
    • 3
  • Cecilia Kopuchian
    • 4
    • 5
  • Hanja B. Brandl
    • 6
  • Pablo L. Tubaro
    • 5
  • Hans Winkler
    • 6
  1. 1.CICyTTP-CONICET, Materi y EspañaDiamanteArgentina
  2. 2.Proyecto Selva de Pino ParanáSan PedroArgentina
  3. 3.Cornell Lab of OrnithologyCornell UniversityIthacaUSA
  4. 4.CECOAL (Centro de Ecología Aplicada del Litoral)-CONICETCorrientesArgentina
  5. 5.División de OrnitologíaMuseo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’Buenos AiresArgentina
  6. 6.Department of Integrative Biology and Evolution, Konrad Lorenz Institute for EthologyVeterinary University ViennaViennaAustria

Personalised recommendations