Skip to main content
Log in

Avian genomics: fledging into the wild!

  • Review
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Next generation sequencing (NGS) technologies provide great resources to study bird evolution and avian functional genomics. They also allow for the identification of suitable high-resolution markers for detailed analyses of the phylogeography of a species or the connectivity of migrating birds between breeding and wintering populations. This review discusses the application of DNA markers for the study of systematics and phylogeny, but also population genetics and phylogeography. Emphasis in this review is on the new methodology of NGS and its use to study avian genomics. The recent publication of the first phylogenomic tree of birds based on genome data of 48 bird taxa from 34 orders is presented in more detail.

Zusammenfassung

Die Ornithologie ist im Zeitalter der Genomik angekommen Neue Sequenziertechnologien (Next Generation Sequencing; NGS) eröffnen die Möglichkeit, Evolution und funktionelle Genomik bei Vögeln umfassend zu untersuchen. Weiterhin erlaubt die NGS-Technologie, geeignete, hochauflösende Markersysteme für Mikrosatelliten und Single Nucleotide Polymorphisms (SNPs) zu identifizieren, um detaillierte Analysen zur Phylogeographie einer Art oder zur Konnektivität von Zugvögeln zwischen Brut- und Winterpopulationen durchzuführen. Dieses Review widmet sich der Anwendung von DNA Markern für die Erforschung von Systematik und Phylogenie sowie Populationsgenetik und Phylogeographie. Ein Schwerpunkt liegt dabei auf der Methodik des Next Generation Sequencing und dessen Anwendung in der Vogelgenomik. Der 2014 in Science veröffentlichte phylogenomische Stammbaum der Vögel, der auf genomweiten Daten von 48 Vogeltaxa aus 34 Ordnungen basiert, wird dabei detailliert besprochen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aitken N, Smith S, Schwarz C, Morin PA (2004) Single nucleotide polymorphism (SNP) discovery in mammals: a targeted-gene approach. Mol Ecol 13:1423–1431. doi:10.1111/j.1365-294X.2004.02159.x

    Article  CAS  PubMed  Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709. doi:10.1038/nrg2844

    Article  CAS  PubMed  Google Scholar 

  • Allentoft ME et al (2009) Identification of microsatellites from an extinct moa species using high-throughput (454) sequence data. Biotechniques 46:195–200. doi:10.2144/000113086

    Article  CAS  PubMed  Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208:1095–1108

    Article  CAS  PubMed  Google Scholar 

  • Avery O, MacLeod C, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Inductions of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79:137–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Avise JC, Zink RM (1988) Molecular genetic divergence between avian sibling species: king and clapper rails, long-billed and short-billed dowitchers, boat-tailed and great-tailed grackles, and tufted and black-crested titmice. Auk 105:516–528

    Google Scholar 

  • Backström N, Fagerberg S, Ellegren H (2008) Genomics of natural bird populations: a gene-based set of reference markers evenly spread across the avian genome. Mol Ecol 17:964–980

    Article  PubMed  CAS  Google Scholar 

  • Baird NA et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3. doi:10.1371/journal.pone.0003376

  • Baker A, Haddrath O (2006) Rare genomic events as phylogenetic markers to help resolve the avian tree of life. J Ornithol 147:43–44

    Google Scholar 

  • Balakrishnan CN, Edwards SV, Clayton DF (2010) The zebra finch genome and avian genomics in the wild. Emu 110:233–241. doi:10.1071/MU09087

    Article  Google Scholar 

  • Baxter SW, Davey JW, Johnston JS, Shelton AM, Heckel DG, Jiggins CD, Blaxter ML (2011) Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS ONE 6:e19315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bennett S (2004) Solexa Ltd. Pharmacogenomics 5:433–438

    Article  PubMed  Google Scholar 

  • Bentley DR (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16:545–552

    Article  CAS  PubMed  Google Scholar 

  • Black WC IV, Baer CF, Antolin MF, DuTeau NM (2001) Population genomics: genome-wide sampling of insect populations. Annu Rev Entomol 46:441–469

    Article  CAS  PubMed  Google Scholar 

  • Boursot P, Belkhir K (2006) Mouse SNPs for evolutionary biology: beware of ascertainment biases. Genome Res 16:1191–1192

    Article  CAS  PubMed  Google Scholar 

  • Bradbury IR et al (2011) Evaluating SNP ascertainment bias and its impact on population assignment in Atlantic cod, Gadus morhua. Mol Ecol Res 11:218–225

    Article  Google Scholar 

  • Britten RJ (1986) Rates of DNA sequence evolution differ between taxonomic groups. Science 231:1393–1398

    Article  CAS  PubMed  Google Scholar 

  • Brookes AJ (1999) The essence of SNPs. Gene 234:177–186

    Article  CAS  PubMed  Google Scholar 

  • Burke T, Bruford MW (1987) DNA fingerprinting in birds. Nature 326:149–152

    Article  Google Scholar 

  • Burleigh JG, Kimball RT, Braun EL (2015) Building the avian tree of life using a large-scale, sparse supermatrix. Mol Phylogenet Evol 84:53–63

    Article  PubMed  Google Scholar 

  • Burton PR et al (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678. doi:10.1038/nature05911

    Article  CAS  Google Scholar 

  • Castoe TA et al (2012) Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake. PLoS One 7. doi:10.1371/journal.pone.0030953

  • Chong AY, Kojima KK, Jurka J, Ray DA, Smit AFA, Isberg SR, Gongora J (2014) Evolution and gene capture in ancient endogenous retroviruses—insights from the crocodilian genomes. Retrovirology 11:71. doi:10.1186/s12977-014-0071-2

    Article  PubMed Central  PubMed  Google Scholar 

  • Cramer ERA, Stenzler L, Talaba AL, Makarewich CA, Vehrencamp SL, Lovette IJ (2008) Isolation and characterization of SNP variation at 90 anonymous loci in the banded wren (Thryothorus pleurostictus). Conserv Genet 9:1657–1660. doi:10.1007/s10592-008-9511-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cui J et al (2014) Low frequency of paleoviral infiltration across the avian phylogeny. Genome Biol 15:539

    Article  PubMed Central  PubMed  Google Scholar 

  • Dahm R (2008) Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum Genet 122:565–581

    Article  CAS  PubMed  Google Scholar 

  • Dalloul RA et al (2010) Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol 8. doi:10.1371/journal.pbio.1000475

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  • Davey JW, Cezard T, Fuentes-Utrilla P, Eland C, Gharbi K, Blaxter ML (2013) Special features of RAD sequencing data: implications for genotyping. Mol Ecol 22:3151–3164. doi:10.1111/mec.12084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • del Hoyo J, Collar NJ (2014) Introduction. In: del Hoyo J, Collar NJ (eds) HBW and BirdLife international illustrated checklist of the birds of the world. Non-passerines, vol 1. Lynx Edicions, Barcelona, pp 19–54

    Google Scholar 

  • Edwards SV (2007) Genomics and ornithology. J Ornithol 148:S27–S33. doi:10.1007/s10336-007-0238-x

    Article  Google Scholar 

  • Eid J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138. doi:10.1126/science.1162986

    Article  CAS  PubMed  Google Scholar 

  • Ellegren H et al (2012) The genomic landscape of species divergence in Ficedula flycatchers. Nature 491:756–760. doi:10.1038/nature11584

    CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. doi:10.1371/journal.pone.0019379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eöry L et al (2015) Avianbase: a community resource for bird genomics. Genome Biol 16:21. doi:10.1186/s13059-015-0588-2

    Article  PubMed Central  PubMed  Google Scholar 

  • Ericson PG (2012) Evolution of terrestrial birds in three continents: biogeography and parallel radiations. J Biogeogr 39:813–824

    Article  Google Scholar 

  • Ericson PG, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, Ohlson JI, Parsons TJ, Zuccon D, Mayr M (2006) Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett 2:543–547

    Article  PubMed Central  PubMed  Google Scholar 

  • Fedurco M, Romieu A, Williams S, Lawrence I, Turcatti G (2006) BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic Acids Res 34:e22

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Frankl-Vilches C et al (2015) Using the canary genome to decipher the evolution of hormone-sensitive gene regulation in seasonal singing birds. Genome Biol 16:19. doi:10.1186/s13059-014-0578-9

    Article  PubMed Central  PubMed  Google Scholar 

  • Greminger MP et al (2014) Generation of SNP datasets for orangutan population genomics using improved reduced-representation sequencing and direct comparisons of SNP calling algorithms. BMC Genomics 15. doi:10.1186/1471-2164-15-16

  • Gardner MG, Fitch AJ, Bertozzi T, Lowe AJ (2011) Rise of the machines—recommendations for ecologists when using next generation sequencing for microsatellite development. Mol Ecol Resour 11:1093–1101. doi:10.1111/j.1755-0998.2011.03037.x

    Article  PubMed  Google Scholar 

  • Gärke C, Ytournel F, Bed’Hom B, Gut I, Lathrop M, Weigend S, Simianer H (2012) Comparison of SNPs and microsatellites for assessing the genetic structure of chicken populations. Anim Genet 43:419–428. doi:10.1111/j.1365-2052.2011.02284.x

    Article  PubMed  Google Scholar 

  • Gohli J et al (2015) The evolutionary history of Afrocanarian blue tits inferred from genomewide SNPs. Mol Ecol 24:180–191. doi:10.1111/mec.13008

    Article  CAS  PubMed  Google Scholar 

  • Goldstein DB, Schlötterer C (1999) Microsatellites: evolution and applications. Oxford University Press, Oxford

    Google Scholar 

  • Green RE et al (2014) Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346:1254449. doi:10.1126/science.1254449

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Greenwold MJ et al (2014) Dynamic evolution of the alpha (α) and beta (β) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles. BMC Evol Biol 14:249

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Groenen MAM et al (2000) A consensus linkage map of the chicken genome. Genome Res 10:137–147

    PubMed Central  CAS  PubMed  Google Scholar 

  • Groenen MAM et al (2011) The development and characterization of a 60 K SNP chip for chicken. BMC Genomics 12. doi:10.1186/1471-2164-12-274

  • Grohme MA, Frias Soler R, Wink M, Frohme M (2013) Microsatellite marker discovery using single molecule real-time circular consensus sequencing on the Pacific Biosciences RS. Biotechniques 55:253–256. doi:10.2144/000114104

    CAS  PubMed  Google Scholar 

  • Grunstein M, Hogness DS (1975) Colony hybridization—a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci USA 72:3961–3965. doi:10.1073/pnas.72.10.3961

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guichoux E et al (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611. doi:10.1111/j.1755-0998.2011.03014.x

    Article  CAS  PubMed  Google Scholar 

  • Hackett SJ et al (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768

    Article  CAS  PubMed  Google Scholar 

  • Hagen IJ, Billing AM, Rønning B, Pedersen SA, Pärn H, Slate J, Jensen H (2013) The easy road to genome-wide medium density SNP screening in a non-model species: development and application of a 10 K SNP-chip for the house sparrow (Passer domesticus). Mol Ecol Resour 13:429–439. doi:10.1111/1755-0998.12088

    Article  CAS  PubMed  Google Scholar 

  • Harr B, Price T (2012) Speciation: clash of the genomes. Curr Biol 22:R1044–R1046. doi:10.1016/j.cub.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  • Hartmann SA, Schaefer HM, Segelbacher G (2014) Development of 12 microsatellite loci for the endangered pale-headed Brushfinch (Atlapetes pallidiceps) and their cross-amplification in two co-occurring brushfinches. J Ornithol 155:835–839

    Article  Google Scholar 

  • Harvey MG, Brumfield RT (2015) Genomic variation in a widespread Neotropical bird (Xenops minutus) reveals divergence, population expansion, and gene flow. Mol Phylogenet Evol 83:305–316. doi:10.1016/j.ympev.2014.10.023

    Article  PubMed  Google Scholar 

  • Haussler D et al (2009) Genome 10 K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J Hered 100:659–674

    Article  CAS  Google Scholar 

  • Hayden EC (2014) The $1,000 genome. Nature 507:294–295. doi:10.1038/507294a

    Article  PubMed  CAS  Google Scholar 

  • Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36:39–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hill WG (1987) DNA fingerprints applied to animal and bird populations. Nature 327:98–99

    Article  CAS  PubMed  Google Scholar 

  • Hillier LW et al (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–777

    Article  CAS  Google Scholar 

  • Hoffman JI, Thorne MAS, McEwing R, Forcada J, Ogden R (2013) Cross-amplification and validation of SNPs conserved over 44 million years between seals and dogs. PLoS ONE 8:e68365. doi:10.1371/journal.pone.0068365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 6:e1000862. doi:10.1371/journal.pgen.1000862

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hohenlohe PA, Amish SJ, Catchen JM, Allendorf FW, Luikart G (2011) Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Mol Ecol Res 11:117–122

    Article  Google Scholar 

  • Huang Y et al (2013) The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nat Genet 45:776–783. doi:10.1038/ng.2657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  • Jaratlerdsiri W et al (2014) Comparative genome analyses reveal distinct structure in the saltwater crocodile MHC. PLoS One 9. doi:10.1371/journal.pone.0114631

  • Janowski S, Grohme MA, Frohme M, Wink M (2014) Development of new microsatellite (STR) markers for Montagu’s harrier (Circus pygargus) via 454 shot-gun pyrosequencing. Open Ornithol J 7:11–18

    Article  Google Scholar 

  • Jarvis ED et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331. doi:10.1126/science.1253451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985a) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67–73

    Article  CAS  PubMed  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985b) Individual-specific ‘fingerprints’ of human DNA. Nature 316:76–79

    Article  CAS  PubMed  Google Scholar 

  • Jonker RM et al (2012) The development of a genome wide SNP set for the barnacle goose Branta leucopsis. PLoS ONE 7:e38412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jonker RM et al (2013) Genetic consequences of breaking migratory traditions in barnacle geese Branta leucopsis. Mol Ecol 22:5835–5847

    Article  CAS  PubMed  Google Scholar 

  • Kawakami T et al (2014) Estimation of linkage disequilibrium and interspecific gene flow in Ficedula flycatchers by a newly developed 50 k single-nucleotide polymorphism array. Mol Ecol Resour 14:1248–1260. doi:10.1111/1755-0998.12270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kelleher ES, Barbash DA (2010) Expanding islands of speciation. Nature 465:1019–1020

    Article  CAS  PubMed  Google Scholar 

  • Kerr KCR, Cloutier A, Baker AJ (2014) One hundred new universal exonic markers for birds developed from a genomic pipeline. J Ornithol 155:561–569. doi:10.1007/s10336-014-1041-0

    Article  Google Scholar 

  • Kerstens HHD, Crooijmans RPMA, Veenendaal A, Dibbits BW, Chin-A-Woeng TFC, den Dunnen JT, Groenen MAM (2009) Large scale single nucleotide polymorphism discovery in unsequenced genomes using second generation high throughput sequencing technology: applied to turkey. BMC Genom 10:479

    Article  CAS  Google Scholar 

  • Kessler LG, Avise JC (1984) Systematic relationships among waterfowl (Anatidae) inferred from restriction endonuclease analysis of mitochondrial DNA. Syst Zool 33:370–380. doi:10.2307/2413089

    Article  Google Scholar 

  • Kessler LG, Avise JC (1985) A comparative description of mitochondrial DNA differentiation in selected avian and other vertebrate genera. Mol Biol Evol 2:109–125

    CAS  PubMed  Google Scholar 

  • Konishi M, Emlen ST, Ricklefs RE, Wingfield JC (1989) Contributions of bird studies to biology. Science 246:465–472

    Article  CAS  PubMed  Google Scholar 

  • Kraus RHS et al (2011) Genome wide SNP discovery, analysis and evaluation in mallard (Anas platyrhynchos). BMC Genom 12:150

    Article  CAS  Google Scholar 

  • Kraus RHS et al (2012) Widespread horizontal genomic exchange does not erode species barriers among sympatric ducks. BMC Evol Biol 12:45

    Article  PubMed Central  PubMed  Google Scholar 

  • Kraus RHS, Van Hooft P, Megens H-J, Tsvey A, Fokin SY, Ydenberg RC, Prins HHT (2013) Global lack of flyway structure in a cosmopolitan bird revealed by a genome wide survey of single nucleotide polymorphisms. Mol Ecol 22:41–55. doi:10.1111/mec.12098

    Article  CAS  PubMed  Google Scholar 

  • Kraus RHS et al (2015) A single-nucleotide polymorphism-based approach for rapid and cost-effective genetic wolf monitoring in Europe based on noninvasively collected samples. Mol Ecol Resour 15:295–305. doi:10.1111/1755-0998.12307

    Article  CAS  PubMed  Google Scholar 

  • Kress WJ (2014) Valuing collections. Science 346:1310. doi:10.1126/science.aaa4115

    Article  CAS  PubMed  Google Scholar 

  • Kriegs JO, Matzke A, Churakov G, Brosius J, Schmitz J (2006) Retroposons as phylogenetic markers in bird genomes. J Ornithol 147:197–198

    Google Scholar 

  • Kurvers RHJM et al (2013) Contrasting context dependence of familiarity and kinship in animal social networks. Anim Behav 86:993–1001. doi:10.1016/j.anbehav.2013.09.001

    Article  Google Scholar 

  • Lerner HRL, Fleischer RC (2010) Prospects for the use of next-generation sequencing methods in ornithology. Auk 127:4–15. doi:10.1525/auk.2010.127.1.4

    Article  Google Scholar 

  • Levene P (1919) The structure of yeast nucleic acid. J Biol Chem 40:415–424

    CAS  Google Scholar 

  • Li C et al (2014a) Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment. GigaScience 3:27

    Article  PubMed Central  PubMed  Google Scholar 

  • Li S et al (2014b) Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species. Genome Biol 15:557

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lovell PV et al (2014) Conserved syntenic clusters of protein coding genes are missing in birds. Genome Biol 15:565

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994

    Article  CAS  PubMed  Google Scholar 

  • Mack AL, Gill FB, Colburn R, Spolsky C (1986) Mitochondrial DNA: a source of genetic-markers for studies of similar passerine bird species. Auk 103:676–681

    Google Scholar 

  • Malausa T et al (2011) High-throughput microsatellite isolation through 454 GS-FLX titanium pyrosequencing of enriched DNA libraries. Mol Ecol Resour 11:638–644. doi:10.1111/j.1755-0998.2011.02992.x

    Article  CAS  PubMed  Google Scholar 

  • Margulies M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meredith RW, Zhang G, Gilbert MTP, Jarvis ED, Springer MS (2014) Evidence for a single loss of mineralized teeth in the common avian ancestor. Science 346:1254390. doi:10.1126/science.1254390

    Article  PubMed  CAS  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248. doi:10.1101/gr.5681207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morin PA, McCarthy M (2007) Highly accurate SNP genotyping from historical and low-quality samples. Mol Ecol Notes 7:937–946

    Article  CAS  Google Scholar 

  • Morin PA, Luikart G, Wayne RK (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216

    Article  Google Scholar 

  • Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA (2013) Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol 22:2841–2847. doi:10.1111/mec.12350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Brien S, Haussler D, Ryder O (2014) The birds of Genome10 K. GigaScience 3:32

    Article  Google Scholar 

  • Ogden R, Baird J, Senn H, McEwing R (2012) The use of cross-species genome-wide arrays to discover SNP markers for conservation genetics: a case study from Arabian and scimitar-horned oryx. Conserv Genet Res 4:471–473. doi:10.1007/s12686-011-9577-2

    Article  Google Scholar 

  • Opazo JC, Hoffman FG, Natarajan C, Witt CC, Berenbrink M, Storz JF (2014) Gene turnover in the avian globin gene families and evolutionary changes in hemoglobin isoform expression. Mol Biol Evol. doi:10.1093/molbev/msu341

    PubMed Central  PubMed  Google Scholar 

  • Ouborg NJ, Pertoldi C, Loeschcke V, Bijlsma RK, Hedrick PW (2010) Conservation genetics in transition to conservation genomics. Trends Genet 26:177–187. doi:10.1016/j.tig.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  • Pfenning AR et al (2014) Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 346:1256846. doi:10.1126/science.1256846

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pereira J et al (2014) Evolutionary genomics and adaptive evolution of the hedgehog gene family (Shh, Ihh and Dhh) in vertebrates. PLoS One 9. doi:10.1371/journal.pone.0074132

  • Piertney S (2006) Avian conservation genetics in the era of genomics. J Ornithol 147:17–18

    Google Scholar 

  • Quinn TW, Quinn JS, Cooke F, White BN (1987) DNA marker analysis detects multiple maternity and paternity in single broods of the lesser snow goose. Nature 326:392–394

    Article  CAS  Google Scholar 

  • Quinn TW, Davies JC, Cooke F, White BN (1989) Genetic analysis of offspring of a female–female pair in the lesser snow goose (Chen c. caerulescens). Auk 106:177–184

    Google Scholar 

  • Rheindt FE, Fujita MK, Wilton PR, Edwards SV (2014) Introgression and phenotypic assimilation in Zimmerius flycatchers (Tyrannidae): population genetic and phylogenetic inferences from genome-wide SNPs. Syst Biol 63:134–152. doi:10.1093/sysbio/syt070

    Article  PubMed  Google Scholar 

  • Romanov MN et al (2014) Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor. BMC Genom 15:1060

    Article  Google Scholar 

  • Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11:3–11

    Article  CAS  PubMed  Google Scholar 

  • Rosenblum EB, Novembre J (2007) Ascertainment bias in spatially structured populations: a case study in the Eastern Fence Lizard. J Hered 98:331–336

    Article  PubMed  Google Scholar 

  • Ruegg K, Anderson EC, Boone J, Pouls J, Smith TB (2014) A role for migration-linked genes and genomic islands in divergence of a songbird. Mol Ecol 23:4757–4769. doi:10.1111/mec.12842

    Article  PubMed  Google Scholar 

  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science 230:1350–1354

    Article  CAS  PubMed  Google Scholar 

  • Saiki RK et al (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  CAS  PubMed  Google Scholar 

  • Sanger F (1981) Determination of nucleotide sequences in DNA. Science 214:1205–1210

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santure AW, Stapley J, Ball AD, Birkhead TR, Burke T, Slate J (2010) On the use of large marker panels to estimate inbreeding and relatedness: empirical and simulation studies of a pedigreed zebra finch population typed at 771 SNPs. Mol Ecol 19:1439–1451

    Article  PubMed  Google Scholar 

  • Scaglione D, Acquadro A, Portis E, Tirone M, Knapp SJ, Lanteri S (2012) RAD tag sequencing as a source of SNP markers in Cynara cardunculus L. BMC Genomics 13. doi:10.1186/1471-2164-13-3

  • Schlötterer C (2004) The evolution of molecular markers—just a matter of fashion? Nat Rev Genet 5:63–69

    Article  PubMed  CAS  Google Scholar 

  • Schoebel CN et al (2013) Lessons learned from microsatellite development for nonmodel organisms using 454 pyrosequencing. J Evol Biol 26:600–611. doi:10.1111/jeb.12077

    Article  CAS  PubMed  Google Scholar 

  • Schopen GCB, Bovenhuis H, Visker MHPW, Van Arendonk JAM (2008) Comparison of information content for microsatellites and SNPs in poultry and cattle. Anim Genet 39:451–453. doi:10.1111/j.1365-2052.2008.01736.x

    Article  CAS  PubMed  Google Scholar 

  • Seddon JM, Parker HG, Ostrander EA, Ellegren H (2005) SNPs in ecological and conservation studies: a test in the Scandinavian wolf population. Mol Ecol 14:503–511

    Article  CAS  PubMed  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    Article  PubMed  Google Scholar 

  • Senn H et al (2013) Reference-free SNP discovery for the Eurasian beaver from restriction site-associated DNA paired-end data. Mol Ecol 22:3141–3150. doi:10.1111/mec.12242

    Article  CAS  PubMed  Google Scholar 

  • Shafer ABA et al (2015) Genomics and the challenging translation into conservation practice. Trends Ecol Evol 30:78–87. doi:10.1016/j.tree.2014.11.009

    Article  PubMed  Google Scholar 

  • Sibley CG, Monroe BL (1990) Distribution and taxonomy of birds of the world. Yale University Press, New Haven

    Google Scholar 

  • Smith EFG, Arctander P, Fjeldså J, Amir OG (1991) A new species of shrike (Laniidae: Laniarius) from Somalia, verified by DNA sequence data from the only known individual. Ibis 133:227–235

    Article  Google Scholar 

  • Smith MJ, Pascal CE, Grauvogel Z, Habicht C, Seeb JE, Seeb LW (2011) Multiplex preamplification PCR and microsatellite validation enables accurate single nucleotide polymorphism genotyping of historical fish scales. Mol Ecol Res 11:268–277

    Article  Google Scholar 

  • Storch V, Welsch U, Wink M (2013) Evolutionsbiologie (in German), vol 3. Spektrum-Springer, Heidelberg

    Book  Google Scholar 

  • Suh A et al (2011) Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nat Commun 2. doi:10.1038/ncomms1448

  • Suh A et al (2014a) Multiple lineages of ancient CR1 retroposons shaped the early genome evolution of amniotes. Genome Biol Evol. doi:10.1093/gbe/evu256

    PubMed Central  PubMed  Google Scholar 

  • Suh A et al (2014b) Early Mesozoic coexistence of amniotes and Hepadnaviridae. PLoS Genet 10:e1004559. doi:10.1371/journal.pgen.1004559

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38:e159–e159. doi:10.1093/nar/gkq543

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van Bers NE, van Oers K, Kerstens HH, Dibbits BW, Crooijmans RPMA, Visser ME, Groenen MAM (2010) Genome-wide SNP detection in the great tit Parus major using high throughput sequencing. Mol Ecol 19:89–99

    Article  PubMed  CAS  Google Scholar 

  • van Bers NEM et al (2012) The design and cross-population application of a genome-wide SNP chip for the great tit Parus major. Mol Ecol Res 12:753–770. doi:10.1111/j.1755-0998.2012.03141.x

    Article  CAS  Google Scholar 

  • van Tassell CP et al (2008) SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods 5:247–252

    Article  PubMed  CAS  Google Scholar 

  • Vellekoop J, Sluijs A, Smit J, Schouten S, Weijers JWH, Sinninghe Damsté JS, Brinkhuis H (2014) Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary. Proc Natl Acad Sci USA 111:7537–7541. doi:10.1073/pnas.1319253111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vignal A, Milan D, SanCristobal M, Eggen A (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34:275–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang B, Ekblom R, Bunikis I, Siitari H, Höglund J (2014a) Whole genome sequencing of the black grouse (Tetrao tetrix): reference guided assembly suggests faster-Z and MHC evolution. BMC Genomics 15. doi:10.1186/1471-2164-15-180

  • Wang R et al (2014b) Convergent differential regulation of SLIT-ROBO axon guidance genes in the brains of vocal learners. J Comp Neurol. doi:10.1002/cne.23719

    Google Scholar 

  • Wang Z, Zhang J, Yang W, An N, Zhang P, Zhang G, Zhou Q (2014c) Temporal genomic evolution of bird sex chromosomes. BMC Evol Biol 14:250

    Article  PubMed Central  PubMed  Google Scholar 

  • Warren WC et al (2010) The genome of a songbird. Nature 464:757–762. doi:10.1038/nature08819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watson JD, Crick FHC (1953) Molecular structure of nucleic acids—a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  • Weber CC, Boussau B, Romiguier J, Jarvis ED, Ellegren H (2014a) Evidence for GC-biased gene conversion as a driver of between-lineage differences in avian base composition. Genome Biol 15:549

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Weber CC, Nabholz B, Romiguier J, Ellegren H (2014b) K r /K c but not d N /d S correlates positively with body mass in birds, raising implications for inferring lineage-specific selection. Genome Biol 15:542

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Whitney O et al (2014) Core and region-enriched networks of behaviorally regulated genes and the singing genome. Science 346:1256780. doi:10.1126/science.1256780

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wink M (2006) Use of DNA markers to study bird migration. J Ornithol 147:234–244

    Article  Google Scholar 

  • Wink M (2011) Evolution und Phylogenie der Vögel—Taxonomische Konsequenzen (in German). Vogelwarte 49:17–24

    Google Scholar 

  • Wink M (2013) Ornithologie für Einsteiger (in German). Spektrum-Springer, Heidelberg

    Google Scholar 

  • Wink M (2015) Der erste phylogenomische Stammbaum der Vögel (in German). Vogelwarte 53:23–28

    Google Scholar 

  • Wirthlin M, Lovell PV, Jarvis ED, Mello CV (2014) Comparative genomics reveals molecular features unique to the songbird lineage. BMC Genom 15:1082

    Article  Google Scholar 

  • Wong GKS et al (2004) A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432:717–722. doi:10.1038/nature03156

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Zhou Z, Dudley R, MacKem S, Chuong CM, Erickson GM, Varricchio DJ (2014) An integrative approach to understanding bird origins. Science 346:1253293. doi:10.1126/science.1253293

    Article  PubMed  CAS  Google Scholar 

  • Zhan X et al (2013) Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle. Nat Genet 45:563–566. doi:10.1038/ng.2588

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Li B, Gilbert MTP, Jarvis ED, Wang J, The Avian Genome Consortium (2014a) Comparative genomic data of the Avian Phylogenomics Project. GigaScience 3:26

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang G et al (2014b) Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346:1311–1320. doi:10.1126/science.1251385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou Q et al (2014) Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 346:1246338. doi:10.1126/science.1246338

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wink.

Additional information

Communicated by J. Fjeldså.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraus, R.H.S., Wink, M. Avian genomics: fledging into the wild!. J Ornithol 156, 851–865 (2015). https://doi.org/10.1007/s10336-015-1253-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-015-1253-y

Keywords

Navigation