High winter site fidelity in a long-distance migrant: implications for wintering ecology and survival estimates

Abstract

The decision for a migratory animal to be site faithful in its non-breeding season has profound implications for migratory connectivity, resilience to winter habitat loss and population dynamics through carry-over effects on future breeding success and fitness. Knowledge of the temporal and spatial scale of site fidelity and dispersal is also central to accurate survival estimates. We established the observed spatial and temporal scale of site fidelity and the ability to detect small-scale dispersal within and between years for a wintering long-distance Palearctic migrant, the Whinchat Saxicola rubetra, by comparing predicted and observed detection rates within the study site. Across 2 years, 54 % of birds returned to the study site and all returning birds reoccupied the territories they used in the previous winter. Observed dispersal was very low despite the high probability of detecting any local dispersal, suggesting that return rates are indicative of true between-winter survival rates for this population. In any winter, 50 % of returning individuals had a previously occupied but now empty territory that was less than one territory-span away from the centre of their current territory; high site fidelity was therefore very unlikely to be because of limited territory availability. Over-winter residency time (defined by departure month) differed significantly across sites and with age, but did not determine the probability of whether a bird returned in the following year. This suggests the use of more than one wintering site for some individuals, rather than reduced over-winter survival. This study is one of the first to comprehensively document site fidelity at the territory scale in a Palearctic system, although less comprehensive studies or anecdotal evidence suggests that high winter site fidelity may be relatively common. Here we provide evidence for the serial residency hypothesis, where selection acts for individual migrants to have generalist habitat requirements, allowing them to survive in and remain site faithful to even relatively low-quality, but sufficient and familiar sites. Lower dispersal and higher site fidelity compared to that during breeding suggest that annual survival estimates are more accurate when measured on the wintering grounds. This study supports previous findings that wintering conditions do not limit Whinchat populations.

Zusammenfassung

Hohe Wintergebietstreue bei einem Langstreckenzieher und deren Bedeutung für Winterökologie und Überlebensraten

Entscheidet sich ein ziehender Organismus außerhalb der Brutzeit zur Ortstreue, so hat dies weitreichende Folgen für Zugkonnektivität, Toleranz gegenüber Lebensraumverlusten im Wintergebiet und - aufgrund von zeitverzögerten Effekten auf zukünftigen Bruterfolg und Fitness - für die Populationsdynamik. Wissen über das zeitliche und räumliche Ausmaß von Ortstreue und Abwanderung ist außerdem von entscheidender Bedeutung für genaue Schätzungen von Überlebensraten. Durch den Vergleich vorhergesagter und tatsächlicher Nachweisraten im Untersuchungsgebiet bestimmten wir das beobachtete räumliche und zeitliche Ausmaß der Ortstreue und der Nachweisbarkeit kleinräumiger Abwanderung sowohl innerhalb als auch zwischen verschiedenen Jahren bei einem überwinternden Langstreckenzieher, dem Braunkehlchen Saxicola rubetra. Über einen Zeitraum von zwei Jahren kehrten 54 % der Vögel ins Untersuchungsgebiet zurück und alle Rückkehrer besetzten wieder ihre Territorien vom vorigen Winter. Obwohl die Wahrscheinlichkeit, lokale Abwanderung zu registrieren, sehr hoch war, lag die beobachtete Abwanderung trotzdem sehr niedrig, was ein Zeichen dafür ist, dass die Rückkehrraten die tatsächlichen Überlebensraten von einem Winter zum nächsten für diese Population gut abbilden. In jedem der Winter befand sich bei 50 % der Rückkehrer ein vormals besetztes aber nun vakantes Revier in weniger als einer Territoriumsspanne Abstand vom Zentrum; die große Ortstreue wird daher höchstwahrscheinlich nicht durch begrenzte Revierverfügbarkeit bedingt. Die Überwinterungsdauer (definiert durch den Monat des Abzugs) variierte signifikant zwischen den Orten und mit dem Alter, war aber nicht bestimmend für die Wahrscheinlichkeit dafür, ob ein Vogel im Folgejahr zurückkehrt. Dies spricht eher dafür, dass manche Individuen mehrere Überwinterungsgebiete nutzen als für verringerte Winterüberlebensraten. Dies ist eine der ersten Studien zur umfassenden Dokumentation von Ortstreue auf Revierniveau in einem paläarktischen System, obgleich weniger übergreifende Studien sowie anekdotische Hinweise nahelegen, dass eine hohe Wintergebietstreue recht häufig sein könnte. Hier liefern wir Belege für die Serial Residency-Hypothese, bei der die Selektion bewirkt, dass individuelle Zugvögel Lebensraumgeneralisten sind, die in Gebieten von relativ schlechter Qualität überleben können und diesen treu bleiben, so lange es genug davon gibt und sie mit diesen vertraut sind. Eine geringere Abwanderung und höhere Ortstreue als zur Brutzeit spricht dafür, dass die jährlichen Überlebensraten genauer geschätzt werden können, wenn sie in den Überwinterungsgebieten bestimmt werden. Diese Untersuchung bestätigt ältere Befunde, die besagen, dass Braunkehlchenpopulationen nicht durch die Überwinterungsbedingungen begrenzt werden.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Anders AD, Marshall MR (2005) Increasing the accuracy of productivity and survival estimates in assessing landbird population status. Conserv Biol 19:66–74. doi:10.1111/j.1523-1739.2005.00543.x

    Article  Google Scholar 

  2. Baillie SR, Peach WJ (1992) Population limitation in Palearctic-African migrant passerines. Ibis 134:120–132. doi:10.1111/j.1474-919X.1992.tb04742.x

    Article  Google Scholar 

  3. Baker M, Nur N, Geupel GR (1995) Correcting biased estimates of dispersal and survival due to limited study area: theory and an application using wrentits. Condor 97:663–674. doi:10.2307/1369175

    Article  Google Scholar 

  4. Barshep Y, Ottosson U, Waldenstroem J, Hulme M, Svensson S (2012) Non-breeding ecology of the whinchat Saxicola rubetra in Nigeria. Ornis Svec 22:25–32

    Google Scholar 

  5. Bartoń K (2012) MuMIn: multi-model inference. R package version. 1

  6. Bastian HV (1992) Breeding and natal dispersal of whinchats Saxicola rubetra. Ringing Migr 13:13–19. doi:10.1080/03078698.1992.9674010

    Article  Google Scholar 

  7. Bates JM (1992) Winter territorial behavior of Gray Vireos. Wilson Bull 104:425–433

    Google Scholar 

  8. Beheler AS, Rhodes OE Jr, Weeks HP Jr, Moore F (2003) Breeding site and mate fidelity in Eastern phoebes (Sayornis phoebe) in Indiana. Auk 120:990–999. doi:10.1642/0004-8038(2003)120[0990:BSAMFI]2.0.CO;2

  9. Belda EJ, Barba E, Monros JS (2007) Resident and transient dynamics, site fidelity and survival in wintering blackcaps Sylvia atricapilla: evidence from capture–recapture analyses. Ibis 149:396–404. doi:10.1111/j.1474-919X.2007.00657.x

    Article  Google Scholar 

  10. Bensch S, Hasselquist D (1991) Territory infidelity in the polygynous great reed warbler Acrocephalus arundinaceus: the effect of variation in territory attractiveness. J Anim Ecol 60:857–871

    Article  Google Scholar 

  11. Berthold P, Fiedler W, Schlenker R, Querner U (1998) 25-year study of the population development of central European songbirds: a general decline, most evident in long-distance migrants. Naturwissenschaften 85:350–353. doi:10.1007/s001140050514

    Article  CAS  Google Scholar 

  12. Bezzel E, Stiel K (1977) The biology of the whinchat Saxicola rubetra in the Bavarian Alps. Anz Ornithol Ges Bayern 17:1–9

    Google Scholar 

  13. BirdLife International (2004) Birds in Europe: population estimates, trends and conservation status. BirdLife Conservation Series No. 12

  14. Blackburn E, Cresswell W (2015a) Fine-scale habitat use during the non-breeding season suggests that winter habitat does not limit breeding populations of a declining long-distance Palearctic migrant. J Avian Biol. doi:10.1111/jav.00738

    Google Scholar 

  15. Blackburn E, Cresswell W (2015b) High overwinter and annual survival for a declining Palearctic migrant: evidence that wintering conditions may not limit migrant populations. Ibis (submitted)

  16. Börger L et al (2006) Effects of sampling regime on the mean and variance of home range size estimates. J Anim Ecol 75:1393–1405. doi:10.1111/j.1365-2656.2006.01164.x

    PubMed  Article  Google Scholar 

  17. Both C et al (2006) Pied flycatchers Ficedula hypoleuca travelling from Africa to breed in Europe: differential effects of winter and migration conditions on breeding date. Ardea 94:511–525

    Google Scholar 

  18. Bourn D, Wint W (1994) Livestock, land use and agricultural intensification in sub-Saharan Africa. Pastoral Development Network Paper 37a. Overseas Development Institute (ODI), London

  19. Bozdogan H (1987) Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52:345–370. doi:10.1007/BF02294361

    Article  Google Scholar 

  20. Brown DR, Long JA (2007) What is a winter floater? Causes, consequences, and implications for habitat selection. Condor 109:548–565. doi:10.1650/8351.1

    Article  Google Scholar 

  21. Brown DR, Stouffer PC, Strong CM (2000) Movement and territoriality of wintering hermit thrushes in Southeastern Louisiana. Wilson Bull 112:347–353. doi:10.1676/0043-5643(2000)112[0347:MATOWH]2.0.CO;2

  22. Catry P, Campos A, Almada V, Cresswell W (2004) Winter segregation of migrant European robins Erithacus rubecula in relation to sex, age and size. J Avian Biol 35:204–209. doi:10.1111/j.0908-8857.2004.03266.x

    Article  Google Scholar 

  23. Cowley E, Siriwardena GM (2005) Long-term variation in survival rates of sand martins Riparia riparia: dependence on breeding and wintering ground weather, age and sex, and their population consequences. Bird Study 52:237–251. doi:10.1080/00063650509461397

    Article  Google Scholar 

  24. Crawley MJ (2007) The R book. Wiley, Chichester

    Google Scholar 

  25. Cresswell W (2014) Migratory connectivity of Palaearctic–African migratory birds and their responses to environmental change: the serial residency hypothesis. Ibis 156:493–510. doi:10.1111/ibi.12168

    Article  Google Scholar 

  26. Cresswell W, Boyd M, Stevens M (2009) Movements of Palearctic and Afrotropical bird species during the dry season (November–February) within Nigeria. In: Harebottle DM, Craig AJFK, Anderson MD, Rakotomanana, Muchai H (eds) Proceedings of the 12th Pan African ornithological congress, 2008. 2008 edn. Animal Demography Unit, Cape Town, South Africa, pp 8–28

  27. Cuadrado M (1992) Year to year recurrence and site-fidelity of blackcaps Sylvia atricapilla and robins Erithacus rubecula in a Mediterranean wintering area. Ringing Migr 13:36–42. doi:10.1080/03078698.1992.9674013

    Article  Google Scholar 

  28. Dejaifve PA (1994) Ecology and behavior of a Palearctic migrant in Africa. The wintering of the whinchat Saxicola rubetra in Zaïre and its winter distribution in Africa. Rev Ecol Terre Vie 49:35–52

    Google Scholar 

  29. Desante DF, Burton KM, Saracco JF, Walker BL (1995) Productivity indices and survival rate estimates from MAPS, a continent-wide programme of constant-effort mist-netting in North America. J Appl Stat 22:935–948. doi:10.1080/02664769524720

    Article  Google Scholar 

  30. Ergon T, Gardner B (2013) Separating mortality and emigration: modelling space use, dispersal and survival with robust-design spatial capture–recapture data. Methods Ecol Evol. doi:10.1111/2041-210X.12133

    Google Scholar 

  31. ERSI (2012) ArcGIS desktop: release 10, vol 2. Environmental Systems Research Institute, Redlands

    Google Scholar 

  32. Förschler MI, del Val E, Bairlein F (2010) Extraordinary high natal philopatry in a migratory passerine. J Ornithol 151:745–748. doi:10.1007/s10336-010-0495-y

    Article  Google Scholar 

  33. Fox J, Weisberg HS (2010) An R companion to applied regression. Sage, California

    Google Scholar 

  34. Gilroy JJ, Virzi T, Boulton RL, Lockwood JL (2012) A new approach to the “apparent survival” problem: estimating true survival rates from mark–recapture studies. Ecology 93:1509–1516. doi:10.1890/12-0124.1

    PubMed  Article  Google Scholar 

  35. Hansteen TL, Andreassen HP, Ims RA (1997) Effects of spatiotemporal scale on autocorrelation and home range estimators. J Wildl Manag 61:280–290. doi:10.2307/3802583

    Article  Google Scholar 

  36. Henderson IG, Fuller RJ, Conway GJ, Gough SJ (2004) Evidence for declines in populations of grassland-associated birds in marginal upland areas of Britain. Bird Study 51:12–19. doi:10.1080/00063650409461327

    Article  Google Scholar 

  37. Henderson I, Calladine J, Massiminoa D, Taylor JA, Gillings S (2015) Evidence for contrasting causes of population change in two closely related, sympatric breeding species the whinchat Saxicola rubetra and stonechat Saxicola torquata in Britain. Bird Study 61:553–565. doi:10.1080/00063657.2014.962482

    Article  Google Scholar 

  38. Herremans M (1997) Habitat segregation of male and female red-backed shrikes Lanius collurio and lesser grey shrikes Lanius minor in the Kalahari Basin, Botswana. J Avian Biol 28:240–248. doi:10.2307/3676975

    Article  Google Scholar 

  39. Herremans M, Herremans-Tonnoeyr D, Borello WD (1995) Non-breeding site-fidelity of red-backed shrikes Lanius collurio in Botswana. Ostrich 66:145–147

    Google Scholar 

  40. Holmes RT, Sherry TW (1992) Site fidelity of migratory warblers in temperate breeding and Neotropical wintering areas: implications for population dynamics, habitat selection, and conservation. In: Hagan I JM, Johnston DW (eds) Ecology and conservation of Neotropical migrant landbirds. Smithsonian Institution Press, Washington DC, pp 563–575

    Google Scholar 

  41. Holmes RT, Sherry TW, Reitsma L (1989) Population structure, territoriality and overwinter survival of two migrant warbler species in Jamaica. Condor 91:545–561. doi:10.2307/1368105

    Article  Google Scholar 

  42. Hulme MF, Cresswell W (2012) Density and behaviour of whinchats Saxicola rubetra on African farmland suggest that winter habitat conditions do not limit European breeding populations. Ibis 154:680–692. doi:10.1111/j.1474-919X.2012.01258.x

    Article  Google Scholar 

  43. Jenni L, Winkler R (2004) Moult and ageing of European passerines. Academic, London

    Google Scholar 

  44. Jones PJ (1995) Migration strategies of Palearctic passerines in Africa. Isr J Zool 41:393–406. doi:10.1080/00212210.1995.10688809

    Google Scholar 

  45. Karr JR, Nichols JD, Klimkiewicz MK, Brawn JD (1990) Survival rates of birds of tropical and temperate forests: will the dogma survive? Am Nat 136:277–291. doi:10.1086/285098

    Article  Google Scholar 

  46. Kelsey MG (1989) A comparison of the song and territorial behaviour of a long-distance migrant, the marsh warbler Acrocephalus palustris, in summer and winter. Ibis 131:403–414. doi:10.1111/j.1474-919X.1989.tb02788.x

    Article  Google Scholar 

  47. King JMB, Hutchinson JMC (2001) Site fidelity and recurrence of some migrant bird species in The Gambia. Ringing Migr 20:292–302. doi:10.1080/03078698.2001.9674255

    Article  Google Scholar 

  48. Koronkiewicz TJ, Sogge MK, Van Riper C III, Paxton EH (2006) Territoriality, site fidelity, and survivorship of willow flycatchers wintering in Costa Rica. Condor 108:558–570. doi:10.1650/0010-5422(2006)108[558:TSFASO]2.0.CO;2

  49. Kricher JC, Davis WE Jr (1986) Returns and winter-site fidelity of North American migrants banded in Belize, Central America. J Field Ornithol 57:48–52. doi:10.2307/4513089

    Google Scholar 

  50. Latta SC, Faaborg J (2001) Winter site fidelity of prairie warblers in the Dominican Republic. Condor 103:455–468. doi:10.1650/0010-5422(2001)103[0455:WSFOPW]2.0.CO;2

  51. Latta SC, Faaborg J (2002) Demographic and population responses of Cape May warblers wintering in multiple habitats. Ecology 83:2502–2515. doi:10.2307/3071810

    Article  Google Scholar 

  52. Lynch JF, Morton ES, Van der Voort ME (1985) Habitat segregation between the sexes of wintering hooded warblers (Wilsonia citrina). Auk 102:714–721

    Google Scholar 

  53. Marra PP (2000) The role of behavioral dominance in structuring patterns of habitat occupancy in a migrant bird during the nonbreeding season. Behav Ecol 11:299–308. doi:10.1093/beheco/11.3.299

    Article  Google Scholar 

  54. Marra PP, Holmes RT (2001) Consequences of dominance-mediated habitat segregation in American redstarts during the nonbreeding season. Auk 118:92–104. doi:10.1642/0004-8038(2001)118[0092:CODMHS]2.0.CO;2

  55. Marshall MR, Wilson RR, Cooper RJ, Bonney R, Pashley DN, Cooper RJ, Niles L (2000) Estimating survival of Neotropical–Nearctic migratory birds: are they dead or just dispersed. In: Bonney R, Pashley DN, Cooper RJ, Niles L (eds) US Forest Service General Technical Report RMRS-P-16. US Department of Agriculture Forest Service, Ogden

    Google Scholar 

  56. Marshall MR, Diefenbach DR, Wood LA, Cooper RJ (2004) Annual survival estimation of migratory songbirds confounded by incomplete breeding site-fidelity: study designs that may help. Anim Biodivers Conserv 27:59–72

    Google Scholar 

  57. McKinnon EA, Fraser KC, Stutchbury BJM (2013) New discoveries in landbird migration using geolocators, and a flight plan for the future. Auk 130:211–222. doi:10.1525/auk.2013.12226

    Article  Google Scholar 

  58. McNeil R (1982) Winter resident repeats and returns of austral and boreal migrant birds banded in Venezuela. J Field Ornithol 53:125–132

    Google Scholar 

  59. Middleton HA, Morrissey CA, Green DJ (2006) Breeding territory fidelity in a partial migrant, the American dipper Cinclus mexicanus. J Avian Biol 37:169–178. doi:10.1111/j.2006.0908-8857.03514.x

    Article  Google Scholar 

  60. Møller AP, Szép T (2005) Rapid evolutionary change in a secondary sexual character linked to climatic change. J Evol Biol 18:481–495. doi:10.1111/j.1420-9101.2004.00807.x

    PubMed  Article  Google Scholar 

  61. Morton ES (1990) Habitat segregation by sex in the hooded warbler: experiments on proximate causation and discussion of its evolution. Am Nat 135:319–333. doi:10.1086/285048

    Article  Google Scholar 

  62. Morton ES, Lynch JF, Young K, Mehlhop P (1987) Do male hooded warblers exclude females from nonbreeding territories in tropical forest? Auk 104:133–135

    Article  Google Scholar 

  63. Müller M, Spaar R, Schifferli L, Jenni L (2005) Effects of changes in farming of subalpine meadows on a grassland bird, the whinchat (Saxicola rubetra). J Ornithol 146:14–23. doi:10.1007/s10336-004-0059-0

    Article  Google Scholar 

  64. Newton I (2004) Population limitation in migrants. Ibis 146:197–226. doi:10.1111/j.1474-919X.2004.00293.x

    Article  Google Scholar 

  65. Newton I (2006) Can conditions experienced during migration limit the population levels of birds? J Ornithol 147:146–166. doi:10.1007/s10336-006-0058-4

    Article  Google Scholar 

  66. Newton I (2010a) Bird migration. Collins, London

    Google Scholar 

  67. Newton I (2010b) The migration ecology of birds. Academic, London

    Google Scholar 

  68. Nisbet ICT, Medway L (1972) Dispersion, population ecology and migration of eastern great reed warblers Acrocephalus orientalis wintering in Malaysia. Ibis 114:451–494. doi:10.1111/j.1474-919X.1972.tb00850.x

    Article  Google Scholar 

  69. Norris DR, Marra PP, Kyser TK, Sherry TW, Ratcliffe LM (2004) Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc R Soc Lond B 271:59–64. doi:10.1098/rspb.2003.2569

    Article  Google Scholar 

  70. Ornat AL, Greenberg R (1990) Sexual segregation by habitat in migratory warblers in Quintana Roo, Mexico. Auk 107:539–543

    Google Scholar 

  71. Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1998) Patterns of natal and breeding dispersal in birds. J Anim Ecol 67:518–536. doi:10.1046/j.1365-2656.1998.00215.x

    Article  Google Scholar 

  72. Payevsky V, Vysotsky V, Yefremov V, Markovets M, Morozov Y, Shapoval A (1997) Sex-specific survival rates in birds. Zh Obshch Biol 58:5–20

    Google Scholar 

  73. Pulido F (2007) Phenotypic changes in spring arrival: evolution, phenotypic plasticity, effects of weather and condition. Clim Res 35:5–23. doi:10.3354/cr00711

    Article  Google Scholar 

  74. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  75. Rappole JH, Ramos MA, Winker K (1989) Wintering wood thrush movements and mortality in southern Veracruz. Auk 106:402–410. doi:10.1676/13-187.1

    Google Scholar 

  76. Rappole JH, King DI, Diez J (2003) Winter vs. breeding-habitat limitation for an endangered avian migrant. Ecol Appl 13:735–742. doi:10.1890/1051-0761(2003)013[0735:WVBLFA]2.0.CO;2

  77. Reudink MW, Marra PP, Kyser TK, Boag PT, Langin KM, Ratcliffe LM (2009) Non-breeding season events influence sexual selection in a long-distance migratory bird. Proc R Soc Lond B 276:1619–1626. doi:10.1098/rspb.2008.1452

    Article  Google Scholar 

  78. Robinson RA, Balmer DE, Marchant JH (2008) Survival rates of hirundines in relation to British and African rainfall. Ringing Migr 24:1–6. doi:10.1080/03078698.2008.9674375

    Article  Google Scholar 

  79. Salewski V, Bairlein F, Leisler B (2000) Recurrence of some Palaearctic migrant passerine species in West Africa. Ringing Migr 20:29–30. doi:10.1080/03078698.2000.9674224

    Article  Google Scholar 

  80. Salewski V, Bairlein F, Leisler B (2002) Different wintering strategies of two Palearctic migrants in West Africa—a consequence of foraging strategies? Ibis 144:85–93. doi:10.1046/j.0019-1019.2001.00007.x

    Article  Google Scholar 

  81. Sanderson FJ, Donald PF, Pain DJ, Burfield IJ, Van Bommel FPJ (2006) Long-term population declines in Afro-Palearctic migrant birds. Biol Conserv 131:93–105. doi:10.1016/j.biocon.2006.02.008

    Article  Google Scholar 

  82. Sauvage A, Rumsey S, Rodwell S (1998) Recurrence of Palaearctic birds in the lower Senegal river valley. Malimbus 20:33–53

    Google Scholar 

  83. Schaub M, Royle JA (2013) Estimating true instead of apparent survival using spatial Cormack–Jolly–Seber models. Methods Ecol Evol. doi:10.1111/2041-1210X.12134

    Google Scholar 

  84. Schmidt K, Hantge E (1954) Studien an einer farbig beringten Population des Braunkehlchens (Saxicola rubetra). J Ornithol 95:130–173. doi:10.1007/BF01951433

    Article  Google Scholar 

  85. Sherry TW, Holmes RT (1996) Winter habitat quality, population limitation, and conservation of Neotropical–Nearctic migrant birds. Ecology 77:36–48. doi:10.2307/2265652

    Article  Google Scholar 

  86. Shitikov D, Fedotova S, Gagieva V, Fedchuk D, Dubkova E, Vaytina T (2012) Breeding-site fidelity and dispersal in isolated populations of three migratory passerines. Ornis Fenn 89:53–62

    Google Scholar 

  87. Shitikov DA, Morozova MM, Yurchenko YA, Anashina AD (2013) Apparent survival rates of two Sylvia warbler species in northwestern Russia. Ringing Migr 28:16–20. doi:10.1080/03078698.2013.810858

    Article  Google Scholar 

  88. Shitikov DA, Vaytina TM, Gagieva VA, Fedchuk DV (2015) Breeding success affects site fidelity in a whinchat Saxicola rubetra population in abandoned fields. Bird Study 62:96–105. doi:10.1080/00063657.2014.988120

    Article  Google Scholar 

  89. Siriwardena GM, Baillie SR, Wilson JD (1998) Variation in the survival rates of some British passerines with respect to their population trends on farmland. Bird Study 45:276–292. doi:10.1080/00063659809461099

    Article  Google Scholar 

  90. Skilleter M (1995) Winter site fidelity of redstart Phoenicurus phoenicurus in N. Nigeria. Malimbus 17:101–102

    Google Scholar 

  91. Steifetten Ø, Dale S (2006) Viability of an endangered population of ortolan buntings: the effect of a skewed operational sex ratio. Biol Conserv 132:88–97. doi:10.1016/j.biocon.2006.03.016

    Article  Google Scholar 

  92. Studds CE, Kyser TK, Marra PP (2008) Natal dispersal driven by environmental conditions interacting across the annual cycle of a migratory songbird. Proc Natl Acad Sci 105:2929–2933. doi:10.1073/pnas.0710732105

    PubMed  PubMed Central  Article  Google Scholar 

  93. Stutchbury BJ (1994) Competition for winter territories in a Neotropical migrant: the role of age, sex and color. Auk 111:63–69

    Article  Google Scholar 

  94. Thaxter CB, Joys AC, Gregory RD, Baillie SR, Noble DG (2010) Hypotheses to explain patterns of population change among breeding bird species in England. Biol Conserv 143:2006–2019. doi:10.1016/j.biocon.2010.05.004

    Article  Google Scholar 

  95. Tryjanowski P, Goławski A, Kuźniak S, Mokwa T, Antczak M (2007) Disperse or stay? Exceptionally high breeding-site infidelity in the red-backed shrike Lanius collurio. Ardea 95:316–320. doi:10.5253/078.095.0214

    Article  Google Scholar 

  96. Vickery JA, Ewing SR, Smith KW, Pain DJ, Bairlein F, Škorpilová J, Gregory RD (2014) The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156:1–22. doi:10.1111/ibi.12118

    Article  Google Scholar 

  97. Warkentin IG, Hernandez D (1996) The conservation implications of site fidelity: a case study involving Nearctic–Neotropical migrant songbirds wintering in a Costa Rican mangrove. Biol Conserv 77:143–150. doi:10.1016/0006-3207(95)00146-8

    Article  Google Scholar 

  98. Winker K (1998) The concept of floater. Ornitol Neotrop 9:111–119

    Google Scholar 

  99. Wunderle JM Jr (1995) Population characteristics of black-throated blue warblers wintering in three sites on Puerto Rico. Auk 112:931–946

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Leventis Conservation Foundation. We thank the staff and associates of the A.P. Leventis Ornithological Research Institute who made this study possible and who assisted with data collection, and the referees who helped to improve this manuscript. This is paper number 92 from the A.P. Leventis Ornithological Research Institute. This study complies with the current ethics regulations of Nigeria and the A.P. Leventis Ornithological Research Institute.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emma Blackburn.

Additional information

Communicated by N. Chernetsov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blackburn, E., Cresswell, W. High winter site fidelity in a long-distance migrant: implications for wintering ecology and survival estimates. J Ornithol 157, 93–108 (2016). https://doi.org/10.1007/s10336-015-1252-z

Download citation

Keywords

  • Palearctic migrant
  • Non-breeding period
  • Territoriality
  • Saxicola Rubetra
  • Site fidelity
  • Survival rate
  • Serial residency