Speciation in seabirds: why are there so many species…and why aren’t there more?

Abstract

Speciation—the multiplication of species through the evolution of barriers to reproduction between populations—plays a central role in evolution since it enables two or more populations to adapt and evolve independently. However, mechanisms of speciation are notoriously difficult to study and poorly understood. Seabirds provide useful models to investigate factors that may promote or inhibit speciation because their ecology and evolutionary genetics are relatively well understood. Here I review population genetic studies of seabirds to test the importance of six factors with the potential to disrupt gene flow enough to result in speciation. Over 200 studies, including over 100 species, have been published to date. Most show evidence of restrictions in gene flow. Physical (geographic) barriers to dispersal are clearly important: conspecific populations that are separated by large expanses of land or ice show evidence of restricted gene flow, and sister species often are separated by physical barriers to gene flow. However, many species of seabirds show evidence of restrictions in gene flow in the absence of physical barriers to dispersal. Study results indicate that differences in ocean regimes, nonbreeding distributions, foraging distributions during the breeding season, and breeding phenology also can disrupt gene flow enough to lead to speciation. Of these, physical isolation and differences in ocean regime appear to be the most important. Philopatry alone may be sufficient to result in reproductive isolation, but usually it acts in combination with other barriers to gene flow. The effects of many other potential influences on gene flow need to be investigated more thoroughly, including colony distribution/location, wind, interspecific interactions, environmental stability/variability, variation in phenotypic traits associated with mate choice (morphology, behaviour, vocalisations) and intrinsic (genomic) incompatabilities. Recent advances in genome sequencing, especially if used in combination with ecological tools such as geolocators and new methods for data interpretation, are opening exiting new avenues to test the importance of various behavioural, ecological, demographic and genomic factors in reducing or promoting gene flow and so affecting speciation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abbott CL, Double MC (2003a) Phylogeography of shy and white-capped albatrosses inferred from mitochondrial DNA sequences: implications for population history and taxonomy. Mol Ecol 12:2747–2758

    PubMed  Article  CAS  Google Scholar 

  2. Abbott CL, Double MC (2003b) Genetic structure, conservation genetics and evidence of speciation by range expansion in shy and white-capped albatrosses. Mol Ecol 12:2953–2962

    PubMed  Article  Google Scholar 

  3. Alderman R, Double MC, Valencia J, Gales RP (2005) Genetic affinities of newly sampled populations of wandering and black-browed Albatross. Emu 105:169–179

    Article  Google Scholar 

  4. Barbraud C, Jouventin P (1998) What causes body size variation in the Snow Petrel Pagodroma nivea? J Avian Biol 292:161–171

    Article  Google Scholar 

  5. Bearhop S, Fiedler W, Furness RW, Votier SC, Waldron S, Newton J, Bowen GJ, Berthold P, Farnsworth K (2005) Assortative mating as a mechanism for rapid evolution of a migratory divide. Science 310:502–504

    PubMed  Article  CAS  Google Scholar 

  6. Birt TP, Carter HR, Whitworth DL, McDonald A, Newman SH, Gress F, Palacios E, Koepke JS, Friesen VL (2012) Range-wide population genetic structure of the Xantus’s Murrelet (Synthliboramphus hypoleucus). Auk 129:44–55

    Article  Google Scholar 

  7. Birt-Friesen VL, Montevecchi WA, Gaston AJ, Davidson WS (1992) Genetic structure of thick-billed murre (Uria lomvia) populations examined using direct sequence analysis of amplified DNA. Evolution 46:267–272

    Article  CAS  Google Scholar 

  8. Bolton M (2007) Playback experiments indicate absence of vocal recognition among temporally and geographically separated populations of Madeiran Storm-petrels Oceanodroma castro. Ibis 149:255–263

    Article  Google Scholar 

  9. Bolton M, Smith AL, Gomez-Diaz EE, Friesen VL, Medeiros R, Bried J, Roscales JL, Furness RW (2008) Monteiro’s Storm-petrel Oceanodroma monteiroi: a new species from the Azores. Ibis 150:717–727

    Article  Google Scholar 

  10. Brooke MD, Rowe G (1996) Behavioural and molecular evidence for specific status of light and dark morphs of the Herald Petrel Pterodroma heraldica. Ibis 138:420–432

    Article  Google Scholar 

  11. Burg TM, Croxall JP (2001) Global relationships amongst black-browed and grey-headed albatrosses: analysis of population structure using mitochondrial DNA and microsatellites. Mol Ecol 10:2647–2660

    PubMed  Article  CAS  Google Scholar 

  12. Butlin RK (2010) Population genomics and speciation. Genetica 138:409–418

    PubMed  Article  Google Scholar 

  13. Butlin R et al (2012) What do we need to know about speciation? Trends Ecol Evol 27:27–39

    PubMed  Article  Google Scholar 

  14. Carson HL, Templeton AR (1984) Genetic revolutions in relation to speciation phenomena: the founding of new populations. Ann Rev Ecol Syst 15:97–131

    Article  Google Scholar 

  15. Coulson JC (2002) Colonial breeding in seabirds. In: Schrieber EA, Burger J (eds) Biology of marine birds. CRC Press, Boca Raton

    Google Scholar 

  16. Coyne AE, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  17. de Dinechin M, Ottvall R, Quillfeldt P, Jouventin P (2009) Speciation chronology of rockhopper penguins inferred from molecular, geological and palaeoceanographic data. J Biogeogr 36:693–702

    Article  Google Scholar 

  18. del Hoyo J, Elliott A, Sargatal J (1992) Handbook of the birds of the world, vol 1. Lynx Edicions, Barcelona

    Google Scholar 

  19. del Hoyo J, Elliott A, Sargatal J (1996) Handbook of the birds of the world, vol 3. Lynx Edicions, Barcelona

    Google Scholar 

  20. Duffy DC (1983) The ecology of tick parasitism on densely nesting Peruvian seabirds. Ecology 64:110–119

    Article  Google Scholar 

  21. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    PubMed  Article  CAS  Google Scholar 

  22. Eda M, Koike H, Kuro-O M, Mihara S, Hasegawa H, Higuchi H (2012) Inferring the ancient population structure of the vulnerable Phoebastria albatrus, combining ancient DNA, stable isotope, and morphometric analyses of archaeological samples. Cons Gen 13:143–151

    Article  Google Scholar 

  23. Edwards SV, Kingan SB, Calkins JD, Balakrishnan CN, Jennings WB, Swanson WJ, Sorenson MD (2005) Speciation in birds: genes, geography, and sexual selection. Proc Natl Acad Sci USA 102:6550–6557

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. Ellegren H (2013) The evolutionary genomics of birds. Ann Rev Ecol Evol Syst 44:239–259

    Article  Google Scholar 

  25. Ellegren H, Smeds L, Burri R, Olason PI, Backstrom N, Kawakami T, Kunstner A, Makinen H, Nadachowska-Brzyska K, Qvarnstrom A, Uebbing S, Wolf JBW (2012) The genomic landscape of species divergence in Ficedula flycatchers. Nature 491:756–760

    PubMed  CAS  Google Scholar 

  26. Faria PJ, Campos FP, Branco JO, Musso CM, Morgante JS, Bruford MW (2010) Population structure in the South American tern Sterna hirundinacea in the South Atlantic: two populations with distinct breeding phenologies. J Avian Biol 41:378–387

    Article  Google Scholar 

  27. Felicimo AM, Munoz J, Gonzalez-Solis J (2008) Ocean surface winds drive dynamics of transoceanic aerial movements. PLoS One 3:e2928

    Article  CAS  Google Scholar 

  28. Friesen VL, Burg TM, McCoy K (2007a) Mechanisms of population differentiation in seabirds. Mol Ecol 16:1765–1785

    PubMed  Article  CAS  Google Scholar 

  29. Friesen VL, Smith AL, Gomez-Diaz EE, Bolton M, Furness RW, Gonzalez-Solis J, Monteiro LR (2007b) Sympatric speciation by allochrony in a seabird. Proc Natl Acad Sci USA 104:18589–18594

    PubMed  PubMed Central  Article  Google Scholar 

  30. Gangloff B, Zino F, Shirihai H, Gonzalez-Solis J, Couloux A, Pasquet E, Bretagnolle V (2013) The evolution of north-east Atlantic gadfly petrels using statistical phylogeography. Mol Ecol 22:495–507

    PubMed  Article  CAS  Google Scholar 

  31. Gaston AJ, Jones IL (1998) The auks: alcidae. Oxford University Press, Oxford

    Google Scholar 

  32. Gay L, Neubauer G, Zagalska-Neubauer M, Debain C, Pons J-M, David P, Crochet P-A (2007) Molecular and morphological patterns of introgression between two large white-headed gull species in a zone of recent secondary contact. Mol Ecol 16:3215–3227

    PubMed  Article  CAS  Google Scholar 

  33. Gomez-Diaz E, Gonzalez-Solis J, Peinado MA (2009) Population structure in a highly pelagic seabird, the Cory’s shearwater Calonectris diomedea: an examination of genetics, morphology and ecology. Mar Ecol Progr Ser 382:197–209

    Article  Google Scholar 

  34. Gonzalez-Solis J, Felicisimo A, Fox JW, Afanasyev V, Kolbeinsson Y, Munoz J (2009) Influence of sea surface winds on shearwater migration detours. Mar Ecol Prog Ser 391(221):230

    Google Scholar 

  35. Hailer F, Schreiber EA, Miller JM, Levin II, Parker PG, Chesser RT, Fleischer RC (2011) Long-term isolation of a highly mobile seabird on the Galapagos. Proc R Soc B 278:817–825

    PubMed  PubMed Central  Article  Google Scholar 

  36. Hendry AP, Day T (2005) Population structure attributable to reproductive time: isolation by time and adaptation by time. Mol Ecol 14:901–916

    PubMed  Article  CAS  Google Scholar 

  37. Hendry AP, Nosil P, Rieseberg LH (2007) The speed of ecological speciation. Funct Ecol 21:455–464

    PubMed  PubMed Central  Article  Google Scholar 

  38. Hey J, Nielsen R (2007) Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proc Natl Acad Sci USA 104(2785):2790

    Google Scholar 

  39. Humphries EM, Winker K (2010) Working through polytomies: auklets revisited. Mol Phylogen Evol 54:88–96

    Article  Google Scholar 

  40. Ismar SMH, Phillips RA, Rayner MJ, Hauber ME (2011) Geolocation tracking of the annual migration of adult Australasian gannets (Morus serrator) breeding in New Zealand, Wilson. J Ornithol 123:121–125

    Google Scholar 

  41. Jeyasingham W, Taylor SA, Zavalaga CB, Simeone A, Friesen VL (2013) Specialization to cold water upwellings facilitates gene flow in seabirds: additional evidence from the Peruvian pelican, Pelecanus thagus (Aves: Pelecanidae). J Avian Biol 44:297–304

    Article  Google Scholar 

  42. Jones IL, Hunter FM (1993) Mutual sexual selection in a monogamous bird. Nature 362:238–239

    Article  Google Scholar 

  43. Jones IL, Hunter FM (1998) Heterospecific mating preferences for a feather ornament in least auklets. Behav Ecol 9:187–192

    Article  Google Scholar 

  44. Jones IL, Hunter FM, Fraser G (2000) Patterns of variation in ornaments of Crested Auklets Aethia cristatella. J Avian Biol 31:119–127

    Article  Google Scholar 

  45. Jouventin P, Cuthbert RJ, Ottvall R (2006) Genetic isolation and divergence in sexual traits: evidence for the northern rockhopper penguin Eudyptes moseleyi being a sibling species. Mol Ecol 15:3413–3423

    PubMed  Article  CAS  Google Scholar 

  46. Karvonen A, Seehausen O (2012) The role of parasitism in adaptive radiations—when might parasites promote and when might they constrain ecological speciation? Int J Ecol 2012:280169

    Article  Google Scholar 

  47. Kelly JF, Hutto RL (2005) An east-west comparison of migration in North American wood warblers. Condor 107:197–211

    Article  Google Scholar 

  48. Kidd MG, Friesen VL (1998) Analysis of mechanisms of microevolutionary change in Cepphus guillemots using patterns of control region variation. Evolution 52:1158–1168

    Article  CAS  Google Scholar 

  49. Kraaijeveld K (2008) Non-breeding habitat preference affects ecological speciation in migratory waders. Naturewissenschaften 95:347–354

    Article  CAS  Google Scholar 

  50. Kraaijeveld K, Kraaijeveld-Smit FJL, Maan ME (2011) Sexual selection and speciation: the comparative evidence revisited. Biol Rev 86:367–377

    PubMed  Article  Google Scholar 

  51. Liebers D, Helbig AJ, de Knifjj P (2001) Genetic differentiation and phylogeography of gulls in the Larus cachinnans-fuscus group (Aves: Charadriiformes). Mol Ecol 10:2447–2462

    PubMed  Article  CAS  Google Scholar 

  52. Liebers D, de Knijff P, Helbig AJ (2004) The herring gull complex is not a ring species. Proc R Soc B 271:893–901

    PubMed  PubMed Central  Article  Google Scholar 

  53. Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge

    Book  Google Scholar 

  54. McFarlane Tranquilla LA, Montevecchi WA, Fifield DA, Hedd A, Gaston AJ, Robertson GJ, Phillips RA (2014) Individual winter movement strategies in two species of murre (Uria spp.) in the northwest Atlantic. PLoS One 9:e90583

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. Morris-Pocock JA, Anderson DJ, Friesen VL (2011) Mechanisms of global diversification in the brown booby (Sula leucogaster) revealed by uniting statistical phylogeographic and multilocus phylogenetic methods. Mol Ecol 20:2835–2850

    PubMed  Article  CAS  Google Scholar 

  56. Nelson JB (1978) The Sulidae: gannets and boobies. Oxford University Press, Oxford

    Google Scholar 

  57. Neubauer G, Zagalska-Neubauer MM, Pons J-M, Crochet P-A, Chylarecki P, Przystalski A, Gay L (2009) Assortative mating without complete reproductive isolation in a zone of recent secondary contact between Herring Gulls (Larus argentatus) and Caspian Gulls (L. cachinnans). Auk 126:409–419

    Article  Google Scholar 

  58. Nosil P (2012) Ecological speciation. Oxford University Press, Oxford

    Book  Google Scholar 

  59. Nosil P, Feder JL (2012) Genomic divergence during speciation: causes and consequences. Phil Trans R Soc B 367:332–342

    PubMed  PubMed Central  Article  Google Scholar 

  60. Ording GJ, Mercader RJ, Aardema ML, Scriber JM (2010) Allochronic isolation and incipient hybrid speciation in tiger swallowtail butterflies. Oecologica 162:523–531

    Article  Google Scholar 

  61. Patterson SA, Morris-Pocock JA, Friesen VL (2011) A multilocus phylogeny of the Sulidae (Aves: Pelecaniformes). Mol Phylogen Evol 58:181–191

    Article  CAS  Google Scholar 

  62. Pierotti R (1987) Isolating mechanisms in seabirds. Evolution 41:559–570

    Article  Google Scholar 

  63. Pons J-M, Sonsthagen S, Dove CJ, Crochet PA (2014) Extensive mitochondrial introgression in North American great black-backed gulls (Larus marinus) from the American herring gull (Larus smithsonianus) with little nuclear DNA impact. Heredity 112:226–239

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. Price T (2008) Speciation in birds. Roberts and Company, Greenwood Village

    Google Scholar 

  65. Rawlence NJ, Till CE, Scofield RP, Tennyson AJD, Collins CJ, Lalas C, Loh G, Matisoo-Smith E, Waters JM, Spencer HG, Kennedy M (2004) Strong phylogeographic structure in a sedentary seabird, the Stewart Island shag (Leucocarbo chalconotus). PLoS One 9:e90769

    Article  Google Scholar 

  66. Rayner MJ, Hauber ME, Steeves TE, Lawrence HA, Thompson DR, Sagar PM, Bury SJ, Landers TJ, Phillips RA, Ranjard L, Shaffer SA (2011) Contemporary and historical separation of transequatorial migration between genetically distinct seabird populations. Nat Commun 2:332

    PubMed  Article  Google Scholar 

  67. Ritchie MG (2007) Sexual selection and speciation. Ann Rev Ecol Evol Syst 38:79–102

    Article  Google Scholar 

  68. Rolshausen G, Segelbacher G, Hobson KA, Schaefer HM (2009) Contemporary evolution of reproductive isolation and phenotypic divergence in sympatry along a migratory divide. Curr Biol 19:2097–2101

    PubMed  Article  CAS  Google Scholar 

  69. Rosenzweig ML (2001) Loss of speciation rate will impoverish future diversity. Proc Natl Acad Sci USA 98:5404–5410

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. Sagar PM, Stahl J-C, Molloy J (1998) Sex determination and natal philopatry of southern Buller’s mollymawks (Diomedea bulleri bulleri). Notornis 45:271–278

    Google Scholar 

  71. Seddon N, Botero CA, Tobias JA, Dunn PO, MacGregor HEA, Rubenstein DR, Uy JAC, Weir JT, Whittingham LA, Safran RJ (2013) Sexual selection accelerates signal evolution during speciation in birds. Proc R Soc B 280:1065

    Article  Google Scholar 

  72. Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW, Hohenlohe PA, Peichel CL, Saetre G-P et al (2014) Genomics and the origin of species. Nat Rev 15:176–192

    Article  CAS  Google Scholar 

  73. Seneviratne SS, Jones IL, Carr SM (2012) Patterns of vocal divergence in a group of non-oscine birds (auklets; Alcidae, Charadriiformes). Evol Ecol Res 14:95–112

    Google Scholar 

  74. Serrano-Meneses M-A, Szekely T (2006) Sexual size dimorphism in seabirds: sexual selection, fecundity selection and differential niche-utilisation. Oikos 113:385–394

    Article  Google Scholar 

  75. Smith NA, Clark JA (2014) Systematics and evolution of the pan-Alcidae (Aves, Charadriiformes). J Avian Biol 45:125–140

    Google Scholar 

  76. Sonsthagen SA, Chesser RT, Bell DA, Dove CJ (2012) Hybridization among arctic white-headed gulls (Larus spp.) obscures the genetic legacy of the Pleistocene. Ecol Evol 2:1278–1295

    PubMed  PubMed Central  Article  Google Scholar 

  77. Soule ME, Wilcox BA (1980) Conservation biology: an evolutionary-ecological approach. Sinauer Associates, Sunderland

    Google Scholar 

  78. Steeves TE, Anderson DJ, Friesen VL (2005) The Isthmus of Panama: a major physical barrier to gene flow in a highly mobile pantropical seabird. J Evol Biol 18:1000–1008

    PubMed  Article  CAS  Google Scholar 

  79. Sternkopf V, Liebers-Helbig D, Ritz MS, Zhang J, Helbig AJ, de Knijff P (2014) Introgressive hybridization and the evolutionary history of the herring gull complex revealed by mitochondrial and nuclear DNA. BMC Evol Biol 10:348

    Article  CAS  Google Scholar 

  80. Taylor SA, Maclagan L, Anderson DJ, Friesen VL (2011a) Could specialization to cold water upwelling systems influence gene flow and population differentiation in marine organisms? A case study using the blue-footed booby, Sula nebouxii. J Biogeogr 38:883–893

    Article  Google Scholar 

  81. Taylor SA, Zavalaga CB, Luna-Jorquera G, Simeone A, Anderson DJ, Friesen VL (2011b) Panmixia and high genetic diversity in a Humboldt Current endemic, the Peruvian Booby (Sula variegata). J Ornithol 152:623–630

    Article  Google Scholar 

  82. Techow NMSM, Ryan PG, O’Ryan C (2009) Phylogeography and taxonomy of white-chinned and spectacled petrels. Mol Phylogen Evol 52:25–33

    Article  CAS  Google Scholar 

  83. Tershy BE, Croll DA (2000) Parental investment, adult sex ratios, and sexual selection in a socially monogamous seabird. Behav Ecol Sociobiol 48:52–60

    Article  Google Scholar 

  84. Thumser NN, Karron JD, Ficken MS (1996) Interspecific variation in the calls of Spheniscus penguins. Wilson Bull 108:72–79

    Google Scholar 

  85. Tigano A, Damus M, Birt TP, Morris-Pocock JA, Artukhin YB, Friesen VL (2015) The arctic: glacial refugium or area of secondary contact? Inference from population genetic structure of the thick-billed murre (Uria lomvia) and implications for management. J Hered (in press)

  86. Tomkins RJ, Milne BJ (1991) Differences among dark-rumped petrel (Pterodroma phaeopygia) populations within the Galapagos Archipelago. Notornis 38:1–35

    Google Scholar 

  87. Torres R, Velando A (2005) Male preference for female foot colour in the socially monogamous blue-footed booby. Sula nebouxii. Anim Behav 69:5965

    Google Scholar 

  88. Wallace SJ, Wolfe SG, Bradley SW, Harvey AL, Friesen VL (2015) The influence of biogeographicaly barriers on the population genetic structure and gene flow in a coastal seabird. J Biogeogr 42:390–490

    Article  Google Scholar 

  89. Weimerskirch H, Guionnet T, Martin J, Shaffer SA, Costa DP (2000) Fast and fuel efficient? Optimal use of wind by flying albatrosses. Proc R Soc B 267:1869–1874

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  90. Welch AJ, Yoshida AA, Fleischer RC (2011) Mitochondrial and nuclear DNA sequences reveal recent divergence in morphologically indistinguishable petrels. Mol Ecol 20:1364–1377

    PubMed  Article  Google Scholar 

  91. Wiley AE, Welch AJ, Ostrom PH, James HF, Stricker CA, Fleischer RC, Gandhi H, Adams J, Ainley DG, Duvall F, Holmes N, Hu DC, Judge S, Penniman J, Swindle KA (2012) Foraging segregation and genetic divergence between geographically proximate colonies of a highly mobile seabird. Oecologia 168:119–130

    PubMed  Article  Google Scholar 

  92. Wright S (1969) Evolution and the genetics of populations, Vol. 2: The theory of gene frequencies. University of Chicago Press, Chicago

Download references

Acknowledgments

Tim Birt and present and past graduate and undergraduate students in the Friesen/Birt conducted many of the studies described in this review. Eric Saulnier and Vanessa Hrvatin (funded through the Queen’s University Summer Work Experience Program) helped with literature searches. Elisa Dierickx, Lisa Nupen, Anna Lashko Cheryl Baduini, Sarah Wallace Ken Warheit and colleagues shared unpublished data. Tim Birt, David Anderson, Anna Tigano, Rebecca Taylor, Nathaniel Clark, Catherine Dale and Raphael Lavoie provided insightful discussions. Anna Tigano provided help with figure design. Dorit Liebers-Helbig and Franz Bairlein invited me to present this study at the 26th International Ornithological Congress.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vicki L. Friesen.

Additional information

Communicated by E. Matthysen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 188 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Friesen, V.L. Speciation in seabirds: why are there so many species…and why aren’t there more?. J Ornithol 156, 27–39 (2015). https://doi.org/10.1007/s10336-015-1235-0

Download citation

Keywords

  • Allochrony
  • Foraging distribution
  • Gene flow
  • Meta-analysis
  • Nonbreeding distribution
  • Ocean regime