Journal of Ornithology

, Volume 156, Supplement 1, pp 333–342 | Cite as

Early evolution of the biological bird: perspectives from new fossil discoveries in China

  • Jingmai O’Connor
  • Zhonghe Zhou


New discoveries of fossil birds belonging to the Jehol Biota uncovered from Lower Cretaceous lacustrine deposits in northeastern China continue to greatly enrich our understanding of the first major avian radiation. The exceptional preservation of some fossils provides a rare chance to discuss many biological issues that are usually impossible to address in paleontological studies, such as: the ossification pattern of the sternum in the extinct group Enantiornithes, which is unlike that of modern birds and all other archosaurs; the discovery of preserved crop, gizzard, and intestinal contents in several clades which suggest that a near-modern digestive tract including specialized crop morphologies evolved early during avian evolution; and the rare preservation of ovarian follicles which support hypotheses that the right ovary was lost in Aves due to the limitations of powered flight. Together, these data allow a partial reconstruction of the biology of Aves very close to its origin. While no skeletal or integumentary features are recognized to define Aves, we identify two possible soft tissue features that may biologically define Aves relative to other amniotes: the presence of a crop and the loss of the right ovary.


Jehol Biota Mesozoic birds Avian biology Definition of Aves 



We thank Gerald Mayr and Xing Xu for organizing the symposium dedicated to fossil birds at the 26th International Ornithological Congress. We also thank Gerald Mayr and one anonymous reviewer for their comments on an earlier version of this manuscript. This research is supported by the National Basic Research Program of China (973 Program, 2012CB821906), the National Natural Science Foundation of China (41172020, 41372014, 41172016), and the Chinese Academy of Sciences and the Chinese Academy of Sciences.


  1. Buffetaut E et al (2005) Minute theropod eggs and embryo from the Lower Cretaceous of Thailand and the dinosaur-bird transition. Naturwissenschaften 92:477–482. doi: 10.1007/s00114-005-0022-9 PubMedCrossRefGoogle Scholar
  2. Chiappe LM (1995) The phylogenetic position of the Cretaceous birds of Argentina: Enantiornithes and Patagopteryx deferrariisi. In: Peters DS (ed) Acta Palaeornithologica, vol 181. Courier Forschungsinstitut Senckenberg, Senckenberg, pp 55–63Google Scholar
  3. Chiappe LM, Ji S, Ji Q, Norell MA (1999) Anatomy and systematics of the confuciusornithidae (Theropoda: Aves) from the late Mesozoic of Northeastern China. Bull Am Mus Nat Hist 242:1–89Google Scholar
  4. Chiappe LM, Ji S, Ji Q (2007) Juvenile birds from the early cretaceous of China: implications for enantiornithine ontogeny. Am Mus Novit 3594:1–46. doi:10.1206/0003-0082(2007)3594[1:JBFTEC]2.0.CO;2Google Scholar
  5. Chinsamy A, Elzanowski A (2001) Evolution of growth pattern in birds Nature 412:402–403. doi: 10.1038/35086650 PubMedGoogle Scholar
  6. Chinsamy A, Chiappe LM, Dodson P (1995) Mesozoic avian bone microstructure: physiological implications. Paleobiology 21:561–574Google Scholar
  7. Dalsätt J, Zhou Z, Zhang F, Ericson PGP (2006) Food remains in Confuciusornissanctus suggest a fish diet. Naturwissenschaften 93:444–446. doi: 10.1007/s00114-006-0125-y PubMedCrossRefGoogle Scholar
  8. de Beer G (1954) Archaeopteryx lithographica, a study based upon the British museum specimen. Br Mus Publ 224:1–68Google Scholar
  9. Elzanowski A (1999) A comparison of the jaw skeleton in theropods and birds, with a description of the palate in the Oviraptoridae. In: Olson SL, Wellnhofer P, Mourer-Chauviré C, Steadman DW, Martin LD (eds) Avian Paleontology at the Close of the 20th Century: Proceedings of the 4th International Meeting of the Society of Avian Paleontology and Evolution, vol 89. Washington, DC, 4–7 June 1996, pp 311–323Google Scholar
  10. Gao C, Chiappe LM, Meng Q, O’Connor J, Wang X, Cheng X, Liu J (2008) A new basal lineage of early cretaceous birds from China and its implications on the evolution of the avian tail. Palaeontology 51:775–791. doi: 10.1111/j.1475-4983.2008.00793.x CrossRefGoogle Scholar
  11. Gao C-H, Morschhauser EM, Varricchio DJ, Liu J-Y, Zhao B (2012) A second soundly sleeping dragon: new anatomical details of the Chinese troodontid Mei long with implications for phylogeny and taphonomy. PLoS ONE 7:e45203. doi: 10.1371/journal.pone.0045203 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Gauthier J (1986) Saurischian monophyly and the origin of birds. In: Padian K (ed) The origin of birds and the evolution of flight, vol 8. Memoirs, California Academy of Sciences, San Francisco, pp 1–55Google Scholar
  13. Gill FB (2007) Ornithology, 3rd edn. Freeman, New YorkGoogle Scholar
  14. Grellet-Tinner G, Chiappe LM (2004) Dinosaur eggs and nesting: implications for understanding the origin of birds. In: Currie PJ, Koppelhus EB, Shugar MA, Wright JL (eds) Feathered dragons: studies on the transition from dinosaurs to birds. Indiana University Press, Bloomington, pp 185–214Google Scholar
  15. Griffiths P (1993) The question of Compsognathus eggs. Rev Paleobiol Vol Spéc 7:85–94Google Scholar
  16. Griffiths PJ (1999) Compsognathus eggs revisited. In: Bravo AM, Reyes T (eds) 1r Congrés Internacional sobre Ous i Cries de Dinosaures, Extended Abstracts. Isona i Conca Dellà, Catalonia, pp 77–83Google Scholar
  17. Hou L, Zhonghe Z, Martin LD, Feduccia A (1995) A beaked bird from the Jurassic of China. Nature 377:616–618CrossRefGoogle Scholar
  18. Huchzermeyer FW (2003) Crocodiles: biology, husbandry and diseases. CABI, WallingfordCrossRefGoogle Scholar
  19. Ji Q, Currie PJ, Norell MA, Ji S-A (1998) Two feathered dinosaurs from northeastern China. Nature 393:753–761CrossRefGoogle Scholar
  20. Li Z-H, Zhou Z-H, Wang M, Clarke JA (2014) A new specimen of large-bodied basal enantiornithine Bohaiornis from the early cretaceous of China and the inference of feeding ecology in Mesozoic birds. J Paleontol 88:99–108CrossRefGoogle Scholar
  21. Louchart A, Viriot L (2011) From snout to beak: the loss of teeth in birds. Trends Ecol Evol 26:663–673PubMedCrossRefGoogle Scholar
  22. Lü J, Dong Z, Azuma Y, Barsbold R, Tomida Y (2002) Oviraptorosaurs compared to birds. In: Zhou Z, Zhang F (eds) Proceedings of the 5th Symposium of the Society of Avian Paleontology and Evolution, Beijing, 1–4 June 2000. Science Press, Beijing, pp 175–189Google Scholar
  23. Marsh OC (1880) Odontornithes: a monograph on the extinct toothed birds of North America. Prof Pap Eng Dep US Army 18:1–201Google Scholar
  24. Maryanska T, Osmólska H, Wolsan M (2002) Avialan status for Oviraptorosauria. Acta Palaeontol Pol 47:97–116Google Scholar
  25. Mayr G, Manegold A (2013) Can ovarian follicles fossilize? Nature 499:E1PubMedCrossRefGoogle Scholar
  26. Mayr G, Pohl B, Peters DS (2005) A well-preserved Archaeopteryx specimen with theropod features. Science 310:1483–1486. doi: 10.1126/science.1120331 PubMedCrossRefGoogle Scholar
  27. Nixon KC, Carpenter JM, Stevenson DW (2003) The Phylocode is fatally flawed, and the “Linnaean” system can easily be fixed. Bot Rev 69:111–120CrossRefGoogle Scholar
  28. Norell MA, Makovicky PJ (2004) Dromaeosauridae. In: Weishampel DB, Dodson P, Osmólska H (eds) The Dinosauria, 2nd edn. University of California Press, Berkeley, pp 196–209CrossRefGoogle Scholar
  29. O’Connor J, Chiappe LM (2011) A revision of enantiornithine (Aves: ornithothoraces) skull morphology. J Syst Palaeontol 9:135–157CrossRefGoogle Scholar
  30. O’Connor JK, Sullivan C (2014) Reinterpretation of the Early Cretaceous maniraptoran (Dinosauria: theropoda) Zhongornis haoae as a scansoriopterygid-like non-avian, and morphological resemblances between scansoriopterygids and basal oviraptorosaurs. Vertebr Palasiat 52:3–30Google Scholar
  31. O’Connor JK, Chiappe LM, Bell A (2011a) Pre-modern birds: avian divergences in the Mesozoic. In: Dyke GD, Kaiser G (eds) Living dinosaurs: the evolutionary history of birds. Wiley, New Jersey, pp 39–114CrossRefGoogle Scholar
  32. O’Connor JK, Xu X, Zhou Z-H (2011b) Additional specimen of Microraptor provides unique evidence of dinosaurs preying on birds. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1117727108 Google Scholar
  33. O’Connor JK, Zheng X-T, Wang X-L, Wang Y, Zhou Z-H (2013a) Ovarian follicles shed new light on dinosaur reproduction during the transition towards birds. Natl Sci Rev. doi: 10.1093/nsr/nwt012 Google Scholar
  34. O’Connor JK, Zhou Z-H, Zheng X-T (2013b) Zheng et al. reply. Nature 499:E1–E2PubMedCrossRefGoogle Scholar
  35. O’Connor JK, Wang M, Zheng X-T, Wang X-L, Zhou Z-H (2014a) The histology of two female early cretaceous birds. Vertebr Palasiat 52:112–128Google Scholar
  36. O’Connor JK, Wang M, Zheng X-T, Zhou Z-H (2014b) Reply to Foth: preserved cartilage is rare but not absent: troodontid sternal plates are absent, not rare. Proc Natl Acad Sci USA 111:E5335Google Scholar
  37. Osmólska H, Currie PJ, Barsbold R (2004) Oviraptorosauria. In: Weishampel DB, Dodson P, Osmólska H (eds) The dinosauria, 2nd edn. University of California Press, Berkeley, pp 165–183CrossRefGoogle Scholar
  38. Sato T, Chang Y-N, Wu X-C, Zelenitsky DA, Hsiao Y-F (2005) A pair of shelled eggs inside a female dinosaur. Science 308:375. doi: 10.1126/science.1110578 PubMedCrossRefGoogle Scholar
  39. Starck JM (1993) Evolution of avian ontogenies. In: Power DM (ed) Current ornithology, vol 10. Plenum, New York, pp 275–366CrossRefGoogle Scholar
  40. Starck JM, Ricklefs RE (1998) Patterns of development: the altricial-precocial spectrum. In: Starck JM, Ricklefs RE (eds) Avian growth and development. Oxford University Press, New York City, pp 3–30Google Scholar
  41. Turner AH, Pol D, Clarke JA, Erickson GM, Norell MA (2007) A basal dromaeosaurid and size evolution preceding avian flight. Science 317:1378–1381. doi: 10.1126/science.1144066 PubMedCrossRefGoogle Scholar
  42. Turner AH, Makovicky PJ, Norell MA (2012) A review of dromaeosaurid systematics and paravian phylogeny. Bull Am Mus Nat Hist 371:1–206CrossRefGoogle Scholar
  43. Varricchio DJ, Jackson F, Borkowski JJ, Horner JR (1997) Nest and egg clutches of the dinosaur Troodon formosus and the evolution of avian reproductive traits. Nature 385:247–250CrossRefGoogle Scholar
  44. Von Blötzheim G (1958) Zur morphologie und ontogenese von schultergurtel, sternum und becken von Struthio, Rhea und Dromiceius. Rev Suisse Zool 65:609–772CrossRefGoogle Scholar
  45. Wings O (2007) A review of gastrolith function with implications for fossil vertebrates and a revised classification. Acta Palaeontol Pol 52:1–16Google Scholar
  46. Witmer LM (2002) The debate on avian ancestry: phylogeny, function, and fossils. In: Chiappe LM, Witmer LM (eds) Mesozoic birds: above the heads of dinosaurs. University of California Press, Berkeley, pp 3–30Google Scholar
  47. Xing L-D et al (2013) Piscivory in the feathered dinosaur Microraptor. Evolution 67:2441–2445PubMedCrossRefGoogle Scholar
  48. Xu X, Norell MA (2004) A new troodontid dinosaur from China with avian-like sleeping posture. Nature 431:838–841. doi: 10.1038/nature02898 PubMedCrossRefGoogle Scholar
  49. Xu X, Zhou Z, Wang X, Kuang X, Du X (2003) Four-winged dinosaurs from China. Nature 421:335–340PubMedCrossRefGoogle Scholar
  50. Xu X, Ma Q-Y, Hu D-Y (2010a) Pre-Archaeopteryx coelurosaurian dinosaurs and their implications for understanding avian origins. Chin Sci Bull 55:3971–3977CrossRefGoogle Scholar
  51. Xu X, Zheng X-T, You H-L (2010b) Exceptional dinosaur fossils show ontogenetic development of early feathers. Nature 464:1339–1341Google Scholar
  52. Zhang F, Zhou Z, Dyke GJ (2006) Feathers and ‘feather-like’ integumentary structures in Liaoning birds and dinosaurs. Geol J 41:395–404. doi: 10.1002/gj.1057 CrossRefGoogle Scholar
  53. Zhang F, Zhou Z, Benton MJ (2008a) A primitive confuciusornithid bird from China and its implications for early avian flight. Sci China D 51:625–639. doi: 10.1007/s11430-008-0050-3 CrossRefGoogle Scholar
  54. Zhang F-C, Zhou Z-H, Xu X, Wang X-L, Sullivan C (2008b) A bizarre Jurassic maniraptoran from China with elongate ribbon-like feathers. Nature 455:1105–1108. doi: 10.1038/npre.2008.2326.1 PubMedCrossRefGoogle Scholar
  55. Zhang F-C et al (2010) Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature 463:1075–1078PubMedCrossRefGoogle Scholar
  56. Zheng X-T, Martin LD, Zhou Z-H, Burnham DA, Zhang F-C, Miao D (2011) Fossil evidence of avian crops from the early cretaceous of China. Proc Natl Acad Sci USA 108:15904–15907PubMedPubMedCentralCrossRefGoogle Scholar
  57. Zheng X-T, Wang X-L, O’Connor JK, Zhou Z-H (2012) Insight into the early evolution of the avian sternum from juvenile enantiornithines. Nature Commun. doi: 10.1038/ncomms2104 Google Scholar
  58. Zheng X-T, O’Connor JK, Huchzermeyer FW, Wang X-L, Wang Y, Wang M, Zhou Z-H (2013) Preservation of ovarian follicles reveals early evolution of avian reproductive behaviour. Nature 495:507–511PubMedCrossRefGoogle Scholar
  59. Zheng X-T, O’Connor JK, Huchzermeyer FW, Wang X-L, Wang Y, Zhang X-M, Zhou Z-H (2014a) New specimens of Yanornis indicate a piscivorous diet and modern alimentary canal. PLoS ONE 9:e95036. doi: 10.1371/journal.pone.0095036 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Zheng X-T, O’Connor JK, Wang X-L, Wang M, Zhang X-M, Zhou Z-H (2014b) On the absence of sternal elements in Anchiornis (Paraves) and Sapeornis (Aves) and the complex early evolution of the avian sternum. Proc Natl Acad Sci USA 111:13900–13905PubMedPubMedCentralCrossRefGoogle Scholar
  61. Zhou Z (2006) Evolutionary radiation of the Jehol Biota: chronological and ecological perspectives. Geol J 41:377–393. doi: 10.1002/gj.1045 CrossRefGoogle Scholar
  62. Zhou Z, Hou L (2002) The discovery and study of Mesozoic birds in China. In: Chiappe LM, Witmer LM (eds) Mesozoic birds: above the heads of dinosaurs. University of California Press, Berkeley, pp 160–183Google Scholar
  63. Zhou Z-H, Wang X-L (2000) A new species of Caudipteryx from the Yixian formation of Liaoning, northeast China. Vertebr Palasiat 38:111–127Google Scholar
  64. Zhou Z, Zhang F (2002) A long-tailed, seed-eating bird from the Early Cretaceous of China. Nature 418:405–409. doi: 10.1038/nature00930 PubMedCrossRefGoogle Scholar
  65. Zhou Z, Zhang F (2003) Jeholornis compared to Archaeopteryx, with a new understanding of the earliest avian evolution. Naturwissenschaften 90:220–225PubMedCrossRefGoogle Scholar
  66. Zhou Z, Zhang F (2004) A precocial avian embryo from the lower cretaceous of China. Science 306:653PubMedCrossRefGoogle Scholar
  67. Zhou Z-H, Zhang F-C (2006a) A beaked basal ornithurine bird (Aves, ornithurae) from the lower cretaceous of China. Zool Scr 35:363–373. doi: 10.1111/j.1463-6409.2006.00234.x CrossRefGoogle Scholar
  68. Zhou Z-H, Zhang F-C (2006b) Mesozoic birds of China—a synoptic review. Vertebr Palasiat 44:74–98Google Scholar
  69. Zhou Z, Jin F, Zhang J (1992) Preliminary report on a Mesozoic bird from Liaoning, China. Chin Sci Bull 37:1365–1368Google Scholar
  70. Zhou Z-H, Wang X-L, Zhang F-C, Xu X (2000) Important features of Caudipteryx—evidence from two nearly complete new specimens. Vertebr Palasiat 38:242–254Google Scholar
  71. Zhou Z, Barrett PM, Hilton J (2003) An exceptionally preserved Lower Cretaceous ecosystem. Nature 421:807–814PubMedCrossRefGoogle Scholar
  72. Zhou Z, Clarke J, Zhang F, Wings O (2004) Gastroliths in Yanornis: an indication of the earliest radical diet-switching and gizzard plasticity in the lineage leading to living birds. Naturwissenschaften 91:571–574. doi: 10.1007/s00114-004-0567-z PubMedCrossRefGoogle Scholar
  73. Zhou S, Zhou Z-H, O’Connor JK (2013a) A new piscivorous ornithuromorph from the Jehol Biota. Hist Biol 26:1–11. doi: 10.1080/08912963.2013.819504 Google Scholar
  74. Zhou S, Zhou Z-H, O’Connor JK (2013b) Anatomy of the Early Cretaceous Archaeorhynchus spathula. J Vertebr Paleontol 33:141–152CrossRefGoogle Scholar
  75. Zhou S, O’Connor JK, Wang M (2014) A new species from an ornithuromorph dominated locality of the Jehol Group. Chin Sci Bull 59:1–13. doi: 10.1007/s11434-014-0669-8 CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  1. 1.Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina

Personalised recommendations