Abstract
The identification of year-round geographical ranges and the quantification of the degree of migratory connectivity are fundamental to the successful conservation of migratory bird populations. The Stone-curlew Burhinus oedicnemus is a species of conservation concern in Europe, but its ecology and behaviour are relatively poorly investigated. In particular, its migratory behaviour and the locations of the wintering ranges of most European populations are not known in detail because of a lack of specific studies and the scarcity of ringing recoveries. This study aimed to identify the wintering areas of a Stone-curlew population breeding in the Taro River Regional Park (Parma, northern Italy) by integrating the information obtained from ringing recoveries (n = 2), geolocators (n = 7), and GPS data loggers (n = 2). Furthermore, we compared two approaches to inferring the location of an assumed stationary bird using geolocator data. The different sources were quite coherent, indicating that tagged Stone-curlews did not leave the Mediterranean basin throughout the year and passed the winter in Sardinia or in Tunisia. The recorded wintering sites coincided with areas where breeding (and possibly resident) populations are reported, further emphasising the importance of these areas for the conservation of the species throughout the annual cycle. To our knowledge, our study represents the first thorough analysis performed to uncover the movements of a Mediterranean population of Stone-curlews. Furthermore, it proves the great potential of the tracking devices used in this work to provide information on the migration and non-breeding sites of elusive species, for which the application of mark–recapture/re-sighting techniques is hindered by profound limitations.
Zusammenfassung
Muster des Zugverhaltens von in Norditalien brütenden Trielen Burhinus oedicnemus außerhalb der Brutzeit Die ganzjährige Identifikation der Aufenthaltsgebiete sowie die Quantifizierung des Zugverhaltens sind elementar für den erfolgreichen Schutz von Zugvögeln. Triele Burhinus oedicnemus gelten in Europa als in ihrem Bestand gefährdet, und dennoch wird ihre Verhaltensökologie unzureichend untersucht. Besonders das Zugverhalten und die Überwinterungsquartiere vieler europäischer Populationen sind im Detail nicht bekannt, da entweder spezifische Untersuchungen oder Ringfundmeldungen fehlen. Das Ziel dieser Studie war es, die Überwinterungsquartiere einer im Gebiet des Flusses Taro „Parco Taro“(Parma, Norditalien) brütenden Population von Trielen, zu identifizieren. Hierfür wurden die Informationen von Ringfunden (n = 2), Geolokatoren (n = 7) und GPS-Loggern (n = 2) zusammengefasst. Des Weiteren verglichen wir zwei Ansätze für die Bestimmung des Aufenthaltsortes eines augenscheinlich nicht ziehenden Vogels mittels Geolokatoren. Die unterschiedlichen Informationsquellen erwiesen sich als weitgehend übereinstimmend und deuteten darauf hin, dass die markierten Triele sich ganzjährlich im Mittelmeergebiet aufhielten und den Winter auf Sardinien oder in Tunesien verbrachten. Weiterhin stimmten die ermittelten Überwinterungsquartiere mit Brutquartieren vermutlicher standtreuer Triele überein. Dies unterstreicht die ganzjährige Bedeutung dieser Landstriche für den Schutz der Triele. Unsere Studie repräsentiert unseres Wissens die erste vollständige Analyse zu Bewegungsmustern einer Mittelmeerpopulation von Trielen. Darüber hinaus belegt sie das große Potenzial von Standortbestimmungstechniken für den Erhalt von Informationen zum Zugverhalten und zu Überwinterungsquartieren schwer zugänglicher Arten, für welche Rückfangmethoden oder herkömmliche Beobachtungstechniken sich als stark eingeschränkt erwiesen.

Similar content being viewed by others
References
BirdLife International (2004) Birds in Europe. BirdLife International, Wageningen
Brichetti P, Fracasso G (2004) Ornitologia Italiana: Tetraonidae–Scolopacidae, vol 2. Perdisa, Bologna
Bridge ES, Thorup K, Bowlin MS, Chilson PB, Diehl RH, Fléron RW, Hartl P, Kays R, Kelly JF, Robinson WD, Wikelski M (2011) Technology on the move: recent and forthcoming innovations for tracking migratory birds. Bioscience 61:689–698
Bridge ES, Kelly JF, Contina A, Gabrielson RM, MacCurdy RB, Winkler DW (2013) Advances in tracking small migratory birds: a technical review of light-level geolocation. J Field Ornithol 84:121–137
Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519
Costantini D, Møller AP (2013) A meta-analysis of the effects of geolocator application on birds. Curr Zool 59:697–706
Cramp S, Simmons KEL (1983) The birds of the western Palearctic, vol 3. Oxford University Press, Oxford
del Hoyo J, Elliott A, Sargatal J (eds) (1996) Handbook of the birds of the world, vol 3, Hoatzin to auks. Lynx Edicions, Barcelona
Doswald N, Willis SG, Collingham YC, Pain DJ, Green RE, Huntley B (2009) Potential impacts of climatic change on the breeding and non-breeding ranges and migration distance of European Sylvia warblers. J Biogeogr 36:1194–1208
Dragonetti M, Corsi F, Farsi F, Passalacqua L, Giovacchini P (2014) Roosting behaviour of Stone-curlews. Wader Study Group Bull 121:1–6
Faaborg J, Holmes RT, Anders AD, Bildstein KL, Dugger KM, Gauthreaux SA, Heglund P, Hobson KA, Jahn AE, Johnson DH, Latta SC, Levey DJ, Marra PP, Merkord CL, Nol E, Rothstein SI, Sherry TW, Sillett TS, Thompson FR, Warnock N (2010) Conserving migratory land birds in the New World: do we know enough? Ecol Appl 20:398–418
Fiedler W, Bairlein F, Köppen U (2004) Using large-scale data from ringed birds for the investigation of effects of climate change on migrating birds: pitfalls and prospects. In: Moller AP, Fiedler W, Berthold P (eds) Birds and climate change. Elsevier, Amsterdam, pp 49–67
Fraser KC, Stutchbury BJM, Silverio C, Kramer PM, Barrow J, Newstead D, Mickle N, Cousens BF, Lee JC, Morrison DM, Shaheen T, Mammenga P, Applegate K, Tautin J (2012) Continent-wide tracking to determine migratory connectivity and tropical habitat associations of a declining aerial insectivore. Proc R Soc B Biol Sci 279:4901–4906
Giunchi D, Pollonara E, Baldaccini NE (eds) (2009) L’occhione (Burhinus oedicnemus): biologia e conservazione di una specie di interesse comunitario—indicazioni per la gestione del territorio e delle aree protette. Consorzio del Parco Fluviale Regionale del Taro, Collecchio
Green RE, Hodson DP, Holness PR (1997) Survival and movements of Stone-curlews Burhinus oedicnemus ringed in England. Ringing Migr 18:102–112
Griffiths R, Double MC, Orr K, Dawson RJG (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075
Hill R (1994) Theory of geolocation by light levels. In: LeBouef BJ, Laws RM (eds) Elephant seals: population ecology, behavior, and physiology. University of California Press, Berkeley, pp 227–236
Johnson OW, Fielding L, Fisher JP, Gold RS, Goodwill RH, Bruner AE, Furey JF, Brusseau PA, Brusseau NH, Johnson PM (2012) New insight concerning transoceanic migratory pathways of Pacific Golden-Plovers (Pluvialis fulva): the Japan stopover and other linkages as revealed by geolocators. Wader Study Group Bull 119:1–8
Klaassen RHG, Alerstam T, Carlsson P, Fox JW, Lindström Å (2011) Great flights by great snipes: long and fast non-stop migration over benign habitats. Biol Lett 7:833–835
Knudsen E, Lindén A, Both C, Jonzén N, Pulido F, Saino N, Sutherland WJ, Bach LA, Coppack T, Ergon T, Gienapp P, Gill JA, Gordo O, Hedenström A, Lehikoinen E, Marra PP, Møller AP, Nilsson ALK, Péron G, Ranta E, Rubolini D, Sparks TH, Spina F, Studds CE, Saether SA, Tryjanowski P, Stenseth NC (2011) Challenging claims in the study of migratory birds and climate change. Biol Rev 86:928–946
Lisovski S, Hahn S (2012) GeoLight—processing and analysing light-based geolocator data in R. Methods Ecol Evol 3:1055–1059
Lisovski S, Hewson CM, Klaassen RHG, Korner-Nievergelt F, Kristensen MW, Hahn S (2012) Geolocation by light: accuracy and precision affected by environmental factors. Methods Ecol Evol 3:603–612
Marra PP, Hunter D, Perrault AM (2011) Migratory connectivity and the conservation of migratory animals. Environ Law 41:317–655
McKinnon EA, Fraser KC, Stutchbury BJM (2013) New discoveries in landbird migration using geolocators, and a flight plan for the future. Auk 130:211–222
Minton C, Gosbell K, Johns P, Christie M, Klaassen M, Hassell C, Boyle A, Jessop R, Fox JW (2011) Geolocator studies on Ruddy Turnstones Arenaria interpres and Greater Sandplovers Charadrius leschenaultii in the East Asian–Australasia Flyway reveal widely different migration strategies. Wader Study Group Bull 118:87–96
Mori A, Baldaccini NE, Baratti M, Caccamo C, Dessì-Fulgheri F, Grasso R, Nouira S, Ouni R, Pollonara E, Rodriguez-Godoy F, Spena MT, Giunchi D (2014) A first assessment of genetic variability in the Eurasian Stone-curlew Burhinus oedicnemus. Ibis 156:687–692
Naef-Daenzer B (2007) An allometric function to fit leg-loop harnesses to terrestrial birds. J Avian Biol 38:404–407
Newton I (2008) The migration ecology of birds. Academic, London
Porter R, Smith PA (2013) Techniques to improve the accuracy of location estimation using light-level geolocation to track shorebirds. Wader Study Group Bull 120:147–158
Rappole JH, Tipton AR (1991) New harness design for attachment of radio transmitters to small passerines. J Field Ornithol 62:335–337
R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org
Seguin J-F (2011) Répartition et effectif de la population d’œdicnème criard (Burhinus oedicnemus) en Corse. Actualisation dans le cadre de la SCAP et des ZNIEFF. Rapport Ornithys.
SEO/BirdLife (2012) Análisis Preliminar del Banco de Datos de Anillamiento de Aves del Ministerio de Agricultura, Alimentación y Medio Ambiente, para la Realización de un Atlas de Migración de Aves de España. SEO/BirdLife-Fundación Biodiversidad, Madrid
Smith M, Bolton M, Okil DJ, Okil DJ, Summers RW, Ellis P, Liechti F, Wilson JD (2014) Geolocator tagging reveals Pacific migration of Red-necked Phalarope Phalaropus lobatus breeding in Scotland. Ibis 156:870–873
Spina F, Volponi S (2008) Atlante della Migrazione degli Uccelli in Italia. 1. Non-Passeriformi. Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Roma
Taylor CM, Norris DR (2010) Population dynamics in migratory networks. Theor Ecol 3:65–73
Thibault J, Bonaccorsi G (1999) The birds of Corsica: an annotated checklist. British Ornithologists’ Union, Tring
Tinarelli R, Alessandria G, Giovacchini P, Gola L, Ientile R, Meschini A, Nissardi S, Parodi R, Perco F, Taiariol PL, Zucca C (2009) Consistenza e distribuzione dell’occhione in italia: aggiornamento al 2008. In: Giunchi D, Pollonara E, Baldaccini NE (eds) L’occhione (Burhinus oedicnemus): biologia e conservazione di una specie di interesse comunitario—indicazioni per la gestione del territorio e delle aree protette. Consorzio del Parco Fluviale Regionale del Taro, Collecchio, pp 45–50
Vaughan R, Vaughan-Jennings N (2005) The Stone-curlew Burhinus oedicnemus. Isabelline, Falmouth
Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT (2002) Links between worlds: unraveling migratory connectivity. Trends Ecol Evol 17:76–83
Wikelski M, Kays RW, Kasdin NJ, Thorup K, Smith JA, Swenson GW (2007) Going wild: what a global small-animal tracking system could do for experimental biologists. J Exp Biol 210:181–186
Worton BJ (1995) Using Monte Carlo simulation to evaluate kernel-based home range estimators. J Wildl Manage 59:794–800
Acknowledgments
We are grateful to all the people who helped us during the fieldwork, and in particular to Renato Carini and Renzo Rusticali. The Taro River Regional Park supported part of the research.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by N. Chernetsov.
Electronic supplementary material
Below is the link to the electronic supplementary material.
10336_2015_1219_MOESM1_ESM.jpg
Fig. S1. Maps reporting the filtered WINT fixes (filled dots) of geolocator-tagged birds estimated by means of method 1 along with kernel densities encompassing 50 % (KDE 50 %) of the maximum density. Supplementary material 1 (JPEG 663 kb)
10336_2015_1219_MOESM2_ESM.jpg
Fig. S2. Maps reporting the filtered NEST fixes (filled dots) of geolocator-tagged birds estimated by means of method 1 along with kernel densities encompassing 50 % (KDE 50 %) of the maximum density. Supplementary material 2 (JPEG 682 kb)
10336_2015_1219_MOESM3_ESM.jpg
Fig. S3. Distributions of the most likely NEST locations of geolocator-tagged birds estimated by means of method 1 (A, centroid of KDE 50 %) or method 2 (B, latitude = average and range of the three northernmost available NEST fixes; longitude = average ± SD of all available NEST fixes). Open square and diamond indicate the two members of the same breeding pair. Deployment and recapture sites of each bird were considered coincident (Nest site in the figure) because their distance was always less than 150 m. Supplementary material 3 (JPEG 223 kb)
Rights and permissions
About this article
Cite this article
Giunchi, D., Caccamo, C., Mori, A. et al. Pattern of non-breeding movements by Stone-curlews Burhinus oedicnemus breeding in Northern Italy. J Ornithol 156, 991–998 (2015). https://doi.org/10.1007/s10336-015-1219-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10336-015-1219-0


