Skip to main content

Bergmann on the move: a temporal change in the latitudinal gradient in body mass of a wild passerine

Abstract

The latitudinal gradient in body mass, which many organisms show (Bergmann’s rule), is thought to be a response to local environmental conditions varying across latitude. Hence, temporal changes in environmental conditions are expected to lead to a shift in Bergmann’s rule. We compared house sparrow Passer domesticus body mass measures taken in 1984/85 with measures in 2009 to show that the mean body mass decreased in eight and nine populations (for females and males, respectively) out of ten Finnish populations. Consequently, the latitudinal cline in body mass shifted poleward. The decrease in body mass was large (1.5 g reduction in a 33-g bird). Temperatures during sampling did not differ between sampling periods, suggesting that at least the immediate effect of temperature did not explain the reduction in body mass. House sparrows have declined in abundance in Finland and worldwide in recent decades. We here suggest that the deterioration of the (unknown) environmental conditions associated with this population decline (which may include climatic drivers) has led to a poleward shift in Bergmann’s rule in house sparrows.

Zusammenfassung

Bergmann im Fluss: zeitliche Veränderung des breitengradabhängigen Körpermassegradienten eines wildlebenden Singvogels

Der breitengradabhängige Gradient in der Körpermasse, den viele Organismen zeigen (Bergmann’sche Regel), gilt gemeinhin als Reaktion auf breitengradbedingte Unterschiede lokaler Umweltbedingungen. Es ist daher zu erwarten, dass zeitliche Veränderungen dieser Umweltbedingungen eine Verschiebung der Bergmann’schen Regel zur Folge haben. Wir verglichen Körpermassedaten von Haussperlingen Passer domesticus aus den Jahren 1984/85 mit Daten aus 2009 und konnten zeigen, dass die durchschnittliche Körpermasse in acht beziehungsweise neun (bei Weibchen beziehungsweise Männchen) von zehn finnischen Populationen abgenommen hatte. Folglich hat sich der breitengradabhängige Körpermassegradient polwärts verschoben. Die Abnahme der Körpermasse war stark (1.5 g Abnahme bei einem 33 g-Vogel). Die Temperatur zur Zeit der Datengewinnung unterschied sich zwischen den beiden Messzeiträumen nicht, was dafür spricht, dass zumindest der unmittelbare Einfluss der Temperatur die Abnahme der Körpermasse nicht erklären kann. Während der letzten Jahrzehnte hat die Häufigkeit von Haussperlingen sowohl in Finnland als auch weltweit abgenommen. Wir vermuten, dass die Verschlechterung der (unbekannten) Umweltbedingungen (wozu auch klimatische Einflüsse gehören können) im Zusammenhang mit dieser Populationsabnahme zu einer Polwärtsverschiebung der Bergmann’schen Regel bei Haussperlingen geführt hat.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Anderson TR (2006) The ubiquitous house sparrow: from genes to populations. Oxford University, Oxford

    Book  Google Scholar 

  2. Ashton KG (2002) Patterns of within-species body size variation of birds: strong evidence for Bergmann’s rule. Global Ecol Biogeogr 11:505–523

    Article  Google Scholar 

  3. Ashton KG, Tracy MC, de Queiroz A (2000) Is Bergmann’s rule valid for mammals. Am Nat 156:390–415

    Article  Google Scholar 

  4. Bergmann C (1847) Über die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. Göttinger Studien 3:595–708

    Google Scholar 

  5. Blackburn TM, Gaston KJ, Loder N (1999) Geographic gradients in body size: a clarification of Bergmann’s rule. Divers Distrib 5:165–174

    Article  Google Scholar 

  6. Bradshaw WE, Holzapfel CM (2001) Genetic shift in photoperiodic response correlated with global warming. Proc Natl Acad Sci USA 98:14509–14511

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  7. Brommer JE, Hanski IK, Kekkonen J, Väisänen RA (2014) Size differentiation in Finnish house sparrows follows Bergmann’s rule with evidence of local adaptation. J Evol Biol 27:737–747

    CAS  Article  PubMed  Google Scholar 

  8. Charmantier A, Gienapp P (2014) Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evol Appl 7:15–28

    PubMed Central  Article  PubMed  Google Scholar 

  9. Crick HQP, Siriwardena GM (2002) National trends in the breeding performance of house sparrows. In: Crick HQP, Robinson RA, Appleton GF, Clark NA, Rickard AD (eds) Investigation into the causes of the decline of starlings and house sparrows in Great Britain. British trust for ornithology research report 290. Defra, UK, pp 163–191

    Google Scholar 

  10. De Laet J, Summers-Smith JD (2007) The status of the urban house sparrow Passer domesticus in north-western Europe: a review. J Ornithol 148:275–278

    Article  Google Scholar 

  11. Dorsch H (2010) Zur Biometrie von Kleinvogeln. Mitteilungen des Vereins Sachsischer Ornithologen Band 10, Sonderheft 2. Verein Sachsischer Ornithologen, vol 2010. Hohenstein-Ernstthal, Germany

    Google Scholar 

  12. Gienapp P, Brommer JE (2014) Evolutionary responses to climate change. In: Charmantier A, Garant DH, Kruuk LEB (eds) Quantitative genetics in wild populations. Oxford University, Oxford, pp 254–273

    Chapter  Google Scholar 

  13. Holand AM, Jensen H, Tufto J, Moe R (2011) Does selection or genetic drift explain differentiation of morphological characters in house sparrows Passer domesticus? Genet Res 93:367–379

    Article  Google Scholar 

  14. Hole DG, Whittingham MJ, Bradbury RB, Anderson GQA, Lee PLM, Wilson JD, Krebs JR (2002) Widespread local house sparrow extinctions. Nature 418:139–149

    Article  Google Scholar 

  15. Ilmatieteen L (1985) Kuukausikatsaus suomen ilmastoon 1984. Ilmatieteen Laitos, Helsinki

    Google Scholar 

  16. Ilmatieteen L (1986) Kuukausikatsaus suomen ilmastoon 1985. Ilmatieteen Laitos, Helsinki

    Google Scholar 

  17. IPCC (2013). Climate Change 2013 (2013) Contribution of working group I to the Fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) The physical science basis. Cambridge University, Cambridge

    Google Scholar 

  18. Jensen H, Sæther B-E, Ringsby TH, Tufto J, Griffith SC, Ellegren H (2003) Sexual variation in heritability and genetic correlations in morphological traits in house sparrow (Passer domesticus). J Evol Biol 16:1296–1307

    CAS  Article  PubMed  Google Scholar 

  19. Jensen H, Steinsland I, Ringsby TH, Sæther BE (2008) Evolutionary dynamics of a sexual ornament in the house sparrow (Passer domesticus): the role of indirect selection within and between sexes. Evolution 62:1275–1293

    Article  PubMed  Google Scholar 

  20. Johnston RF, Selander RK (1964) House sparrows: rapid evolution of races in North America. Science 144:548–550

    CAS  Article  PubMed  Google Scholar 

  21. Johnston RF, Selander RK (1971) Evolution in the house sparrow. ii. adaptive differentiation in North American populations. Evolution 25:1–28

    Article  Google Scholar 

  22. Kekkonen J, Hanski IK, Jensen H, Väisänen RA, Brommer JE (2011) Increased genetic differentiation in house sparrows after a strong population decline: from panmixia towards structure in a common bird. Biol Conserv 144:2931–2940

    Article  Google Scholar 

  23. Kekkonen J, Jensen H, Brommer JE (2012) Morphometric differentiation across Finnish house sparrow Passer domesticus populations in comparison to the neutral expectation. Ibis 154:846–857

    Article  Google Scholar 

  24. Lehikoinen A, Saurola P, Byholm P, Lindén A, Valkama J (2010) Life history events of the Eurasian sparrowhawk Accipiter nisus in a changing climate. J Avian Biol 41:627–636

    Article  Google Scholar 

  25. Lilliendahl K (1997) The effect of predator presence on body mass in captive greenfinches. Anim Behav 53:75–81

    Article  Google Scholar 

  26. MacNamara JM, Houston AI (1990) The value of fat reserves and the tradeoff between starvation and predation. Acta Biotheor 38:37–61

    Article  Google Scholar 

  27. Mayr E (1963) Animal species and evolution. Harvard University, Cambridge

    Book  Google Scholar 

  28. Meiri S, Dayan T (2003) On the validity of Bergmann’s rule. J Biogeogr 30:331–351

    Article  Google Scholar 

  29. Millien V, Kathleen Lyons S, Olson L, Smith FA, Wilson AB, Yom-Tov Y (2006) Ecotypic variation in the context of global climate change: revisiting the rules. Ecol Lett 9:853–869

    Article  PubMed  Google Scholar 

  30. Murphy EC (1985) Bergmann’s rule, seasonality, and geographic variation in body size of house sparrows. Evolution 39:1327–1334

    Article  Google Scholar 

  31. Ozgul A, Tuljapulkar S, Benton TG, Pemberton JM, Clutton-Brock TH, Coulson T (2009) The dynamics of phenotypic change and the shrinking sheep of St. Kilda. Science 325:464–467

    CAS  Article  PubMed  Google Scholar 

  32. Summers-Smith JD (2003) The decline of the house sparrow: a review. Br Birds 96:439–446

    Google Scholar 

  33. Svensson L (1992) Identification guide to European passerines. Stockholm, Sweden

    Google Scholar 

  34. Teplitsky C, Millien V (2014) Climate warming and Bergmann’s rule through time: is there any evidence? Evol Appl 7:156–168

    PubMed Central  Article  PubMed  Google Scholar 

  35. Teplitsky C, Mills JA, Alho JS, Yarrall JW, Merilä J (2008) Bergmann’s rule and climate change revisited: disentangling environmental and genetic responses in a wild bird population. Proc Natl Acad Sci USA 105:13492–13496

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  36. Tietäväinen H, Tuomenvirta H, Venäläinen A (2010) Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. Int J Climatol 30:2247–2256

    Article  Google Scholar 

  37. Umina PA, Weeks AR, Kearney MR, McKechnie SW, Hoffmann AA (2005) A rapid shift in a classical clinal pattern in Drosophila reflecting climate change. Science 308:691–693

    CAS  Article  PubMed  Google Scholar 

  38. Väisänen RA (2008) Talviruokintapaikkojen lintujen seuranta 1989–2007. Linnut Vuosikirja 2007:60–79

    Google Scholar 

  39. van Buskirk J, Mulvihill RS, Leberman RC (2010) Declining body sizes in North American birds associated with climate change. Oikos 119:1047–1055

    Article  Google Scholar 

  40. Vincent KE (2005) Investigating the causes of the decline of the urban house sparrow Passer domesticus population in Britain. Dissertation. De Montfort University, UK, p 2005

    Google Scholar 

  41. Yom-Tov Y (2001) Global warming and body mass decline in Israeli passerine birds. Proc Royal Soc B 268:947–952

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank the landowners for allowing us to trap house sparrows on their property. Anonymous reviewers are thanked for providing excellent comments that improved the paper. Sampling in the 1980s was supported by the Academy of Finland (to RAV) and re-sampling in 2009 by the Nessling Foundation (to JEB)

Conflict of interest

The authors have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jon E. Brommer.

Additional information

Communicated by F. Bairlein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brommer, J.E., Hanski, I.K., Kekkonen, J. et al. Bergmann on the move: a temporal change in the latitudinal gradient in body mass of a wild passerine. J Ornithol 156, 1105–1112 (2015). https://doi.org/10.1007/s10336-015-1211-8

Download citation

Keywords

  • House sparrow
  • Passer domesticus
  • Body mass
  • Bergmann’s rule
  • Temperature