Advertisement

Journal of Ornithology

, Volume 156, Issue 4, pp 903–913 | Cite as

Black Sparrowhawk brooding behaviour in relation to chick age and weather variation in the recently colonised Cape Peninsula, South Africa

  • Jakob Katzenberger
  • Gareth Tate
  • Ann Koeslag
  • Arjun Amar
Original Article

Abstract

Understanding the effects climate change may have on animal populations relies on establishing which environmental conditions shape their behaviour and subsequent reproductive output, fitness or survival. South Africa has seen significant warming trends and changes in precipitation over the last few decades; however, the ways in which these trends are likely to influence animal populations are still relatively poorly understood. The Black Sparrowhawk (Accipiter melanoleucus) has expanded its range in South Africa and recently colonised the Cape Peninsula in the Western Cape, a region that experiences a Mediterranean climate. In this study, we examined the brooding behaviour of this species, a vital trait for reproductive success, in the Cape Peninsula breeding population. We examined the influence of chick age as well as temperature, rainfall and wind speed on parental brooding. Additionally, the effect of prey provisioning on brooding was investigated. In our analyses, we used data on brooding from nest cameras together with weather data collected at a fine temporal scale (1 h). The variable with the strongest influence on parental brooding was chick age. This variable showed a non-linear relationship. Initially chicks were brooded >50 % of the time; however after 3 weeks brooding declined rapidly. The proportion of time spent brooding increased with decreasing temperatures, while rainfall and wind speed showed a positive correlation with the amount of brooding. Our model predicted that in common winter conditions of the Western Cape (15 °C, 10 km/h wind speed, 1 mm/h rainfall) A. melanoleucus breeding pairs spent nearly 100 % of their time brooding young chicks (7 days old) to protect them from detrimental weather. Our results highlight measurable effects of weather patterns on avian behaviour at a key stage of the life cycle. Changes in weather conditions predicted for this region will likely further benefit this range-expanding species.

Keywords

Black Sparrowhawk Accipiter melanoleucus Brooding Climate Weather South Africa 

Zusammenfassung

Der Einfluss von Nestlingsalter und Wetterschwankungen auf das Brutverhalten des Mohrenhabichts auf der kürzlich besiedelten Kap-Halbinsel, Südafrika

Um die möglichen Effekte des Klimawandels auf Tierpopulationen zu ergründen ist das Verständnis der Umweltfaktoren die ihr Verhalten und die darauffolgende Reproduktion, Fitness und das Überleben bestimmen von grundlegender Bedeutung. In welcher Weise die Klimaerwärmung und Niederschlagsveränderung der letzten Jahrzehnte in Südafrika Einfluss auf die Tierpopulationen hat ist noch nicht vollständig erforscht. Der Mohrenhabicht (Accipiter melanoleucus) hat sein lokales Verbreitungsgebiet in der letzten Zeit erheblich vergrößert und auch die durch ein mediterranes Klima geprägte Kap-Halbinsel in der Provinz Westkap besiedelt. In dieser Studie haben wir das Brutverhalten der Art, ein unverzichtbarer Aspekt für die erfolgreiche Reproduktion, an der Kap-Halbinsel Population erforscht. Untersucht wurde der Einfluss des Nestlingsalters sowie von Temperatur, Niederschlag und Windgeschwindigkeit auf das Brüten der Elternvögel. Zusätzlich wurde geprüft ob die Bereitstellung von Nahrung das Brüten beeinflusste. Für unsere Analysen nutzten wir Aufnahmen von Nestkameras zusammen mit Wetterdaten auf einer sehr detaillierten Zeitskala von einer Stunde. Den stärksten Einfluss hatte das Alter der Nestlinge, welches in einem nichtlinearen Zusammenhang mit dem Brüten der Elternvögel stand. Anfangs wurden die Nestlinge durchschnittlich >50 % der Zeit bebrütet aber nach drei Wochen fiel dieser Wert rasch ab. Der Anteil der stündlichen Brutzeit war höher bei niedrigeren Temperaturen, während Niederschlag und Windgeschwindigkeit eine positive Korrelation mit dem stündlichen Brutanteil zeigten. Unser Modell prognostizierte, dass bei üblichen Wetterkonditionen im Winter des Westkaps (15 °C, 10 km/h Windgeschwindigkeit, 1 mm/h Niederschlag) Brutpaare von A. melanoleucus nahezu 100 % der Zeit mit dem Bebrüten von jungen Nestlingen (7 Tage alt) verbringen müssen, um diese vor schädlichen Wettereinflüssen schützen zu können. Unsere Ergebnisse ziehen Aufmerksamkeit darauf wie Wettereffekte das Verhalten von Vögeln in einer entscheidenden Stufe ihres Lebenszyklus beeinflussen und wie diese Effekte quantifiziert werden können. Die vorhergesagten Klimaveränderungen in der Region werden der weiteren Ausbreitung des Mohrenhabichts voraussichtlich zuträglich sein.

Notes

Acknowledgments

We are grateful for help with data processing from Marina Wang, Tesray Linevee, Sarah Caine, Jacques de Satgé, Jess Suri and Tumelo Morapi. Jacques de Satgé and Susie Cunningham are also thanked for comprehensive discussions and their help in improving the manuscript. Two anonymous reviewers are thanked for their comments of on a previous draft of this manuscript. For the provisioning of weather data we acknowledge the support of the South African Environmental Observation Network (SAEON). We are also grateful to Nigel Butcher (RSPB) who helped develop some of the cameras used in this study. J.K. was funded by a Deutschlandstipendium scholarship of the University of Applied Sciences Bremen.

References

  1. Allan DG (1997) Black Sparrowhawk. In: Harrison J, Allan D, Underhill L, Herremans M, Tree A, Parker V, Brown C (eds) The atlas of Southern African birds. Avian Demogr Unit and BirdLife S. Afr, Johannesburg, pp 224–225Google Scholar
  2. Amar A, Davies J, Meek E, Williams J, Knight A, Redpath S (2011) Long-term impact of changes in sheep Ovis aries densities on the breeding output of the hen harrier Circus cyaneus. J Appl Ecol 48:220–227CrossRefGoogle Scholar
  3. Amar A, Court IR, Davison M, Downing S, Grimshaw T, Pickford T, Raw D (2012) Linking nest histories, remotely sensed land use data and wildlife crime records to explore the impact of grouse moor management on peregrine falcon populations. Biol Conserv 145:86–94CrossRefGoogle Scholar
  4. Amar A, Koeslag A, Curtis O (2013) Plumage polymorphism in a newly colonized black sparrowhawk population: classification, temporal stability and inheritance patterns. J Zool 289:60–67CrossRefGoogle Scholar
  5. Amar A, Koeslag A, Malan G, Brown M, Wreford E (2014) Clinal variation in the morph ratio of Black Sparrowhawks Accipiter melanoleucus in South Africa and its correlation with environmental variables. Ibis 156:627–638CrossRefGoogle Scholar
  6. Bolton M, Butcher N, Sharpe F, Stevens D, Fisher G (2007) Remote monitoring of nests using digital camera technology. J Field Ornithol 78:213–220CrossRefGoogle Scholar
  7. Brown LH, Brown BE (1979) The behaviour of the black sparrowhawk Accipiter melanoleucus. Ardea 67:77–95Google Scholar
  8. Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque J-F, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Hernández Morcillo M, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vié J-C, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168CrossRefPubMedGoogle Scholar
  9. Byholm P, Rousi H, Sole I (2011) Parental care in nesting hawks: breeding experience and food availability influence the outcome. Behav Ecol 22:609–615CrossRefGoogle Scholar
  10. Cain SL (2008) Time budgets and behavior of nesting Bald Eagles. In: Wright BA, Schempf PF (eds) Bald Eagles in Alaska, pp 73–94Google Scholar
  11. Carey C (2009) The impacts of climate change on the annual cycles of birds. Philos Trans R Soc Lond B Biol Sci 364:3321–3330PubMedCentralCrossRefPubMedGoogle Scholar
  12. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Rueda VM, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 848–940Google Scholar
  13. Collopy MW (1984) Parental care and feeding ecology of Golden Eagle nestlings. Auk 101:753–760CrossRefGoogle Scholar
  14. Core Team R (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  15. Crick HQP (2004) The impact of climate change on birds. Ibis 146:48–56CrossRefGoogle Scholar
  16. Curtis O, Malan G, Jenkins A, Myburgh N (2004) Multiple-brooding in birds of prey: South African black sparrowhawks Accipiter melanoleucus extend the boundaries. Ibis 147:11–16CrossRefGoogle Scholar
  17. Curtis O, Hockey PAR, Koeslag A (2007) Competition with Egyptian geese Alopochen aegyptiaca overrides environmental factors in determining productivity of black sparrowhawks Accipiter melanoleucus. Ibis 149:502–508CrossRefGoogle Scholar
  18. de Lily-Arison R R (2000) Breeding biology of Frances’s Sparrowhawk Accipiter francesii in a lowland rainforest of northeastern Madagascar. Ostrich 71:332–335CrossRefGoogle Scholar
  19. Debus S, Hatfield T, Ley A, Rose A (2007) Breeding biology and diet of the Wedge-tailed Eagle Aquila audax in the New England region of New South Wales. Aust F Ornithol 24:93–120Google Scholar
  20. Del Hoyo J, Elliott A, Sargatal J (1994) Handbook of the birds of the world. Vol 2, New world Vultures to Guineafowl. Lynx Edicions, BarcelonaGoogle Scholar
  21. Donald PGM (2004) The breeding ecology and behaviour of a colour-marked population of Brown Falcons (Falco berigora). Emu 104:1–6CrossRefGoogle Scholar
  22. Dunn EH (1980) On the variability in energy allocation of nestling birds. Auk 97:19–27Google Scholar
  23. Dykstra C, Hays J, Simon M, Daniel F (2003) Behavior and prey of nesting Red-shouldered Hawks in southwestern Ohio. J Raptor Res 37:177–187Google Scholar
  24. Elkins N (1983) Weather and bird behaviour. Poyser, CaltonGoogle Scholar
  25. Griffin C, Paton P, Baskett T (1998) Breeding ecology and behavior of the Hawaiian Hawk. Condor 100:654–662CrossRefGoogle Scholar
  26. Hartley RR, Hough J (2004) Breeding, ecology and human impacts on the Black Sparrowhawk in Zimbabwe—1971–1980. Honeyguide 50:125–142Google Scholar
  27. Hockey PAR, Midgley GF (2009) Avian range changes and climate change: a cautionary tale from the Cape Peninsula. Ostrich 80:29–34CrossRefGoogle Scholar
  28. Hockey PAR, Dean WRJ, Ryan PG (2005) Roberts—birds of southern Africa, 7th edn. Trustees of the John Voelcker Bird Book Fund, Cape TownGoogle Scholar
  29. Hockey PAR, Sirami C, Ridley AR, Midgley GF, Babiker HA (2011) Interrogating recent range changes in South African birds: confounding signals from land use and climate change present a challenge for attribution. Divers Distrib 17:254–261CrossRefGoogle Scholar
  30. Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485CrossRefPubMedGoogle Scholar
  31. Jenkins M (1978) Gyrfalcon nesting behavior from hatching to fledging. Auk 95:122–127CrossRefGoogle Scholar
  32. Jenkins A (2000) Variation in the quality of parental care at falcon nests in South Africa as evidence for postulated differences in food availability. Ardea 88:17–32Google Scholar
  33. Kross SM, Tylianakis JM, Nelson XJ (2012) Translocation of threatened New Zealand falcons to vineyards increases nest attendance, brooding and feeding rates. PLoS ONE 7:e38679PubMedCentralCrossRefPubMedGoogle Scholar
  34. Kruger AC, Shongwe S (2004) Temperature trends in South Africa: 1960–2003. Int J Climatol 24:1929–1945CrossRefGoogle Scholar
  35. Leckie FM, Arroyo BE, Thirgood SJ, Redpath SM (2008) Parental differences in brood provisioning by Hen Harriers Circus cyaneus. Bird Study 55:209–215CrossRefGoogle Scholar
  36. Lehikoinen A, Byholm P, Ranta E, Saurola P, Valkama J, Korpimäki E, Pietiäinen H, Henttonen H (2009) Reproduction of the common buzzard at its northern range margin under climatic change. Oikos 118:829–836CrossRefGoogle Scholar
  37. Levenson H (1979) Time and activity budget of Ospreys nesting in northern California. Condor 81:364–369CrossRefGoogle Scholar
  38. Lyons DM, Mosher JA (1987) Morphological growth, behavioral development, and parental care of Broad-winged Hawks. J Field Ornithol 58:334–344Google Scholar
  39. Madden C (2013) The impacts of Corvids on Biodiversity. Unpublished MSc thesis, University of Cape TownGoogle Scholar
  40. Martin TE (1987) Food as a limit on breeding birds: a life-history perspective. Annu Rev Ecol Syst 18:453–487CrossRefGoogle Scholar
  41. Martin R, Sebele L, Koeslag A, Curtis O, Abadi F, Amar A (2014) Phenological shifts assist colonisation of a novel environment in a range-expanding raptor. Oikos. doi: 10.1111/oik.01058 Google Scholar
  42. MCDonald PG, Olsen PD, Cockburn A (2004) Weather dictates reproductive success and survival in the Australian brown falcon Falco berigora. J Anim Ecol 73:683–692CrossRefGoogle Scholar
  43. Mearns R, Newton I (1988) Factors affecting breeding success of peregrines in South Scotland. J Anim Ecol 57:903–916CrossRefGoogle Scholar
  44. Midgley GF, Hannah L, Millar D, Thuiller W, Booth A (2003) Developing regional and species-level assessments of climate change impacts on biodiversity in the Cape Floristic Region. Biol Conserv 112:87–97CrossRefGoogle Scholar
  45. Moss D (1979) Growth of nestling sparrowhawks (Accipiter nisus). J Zool 187:297–314CrossRefGoogle Scholar
  46. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142CrossRefGoogle Scholar
  47. Newton I (1978) Feeding and development of sparrowhawk Accipiter nisus nestlings. J Zool 184:465–487CrossRefGoogle Scholar
  48. Newton I (1986) The Sparrowhawk. Poyser, CaltonGoogle Scholar
  49. Oettlé E (1994) Black sparrowhawk breeds on the Cape Peninsula. Promerops 212:7Google Scholar
  50. Olsen P, Olsen J (1992) Does rain hamper hunting by breeding raptors? Emu 92:184–187CrossRefGoogle Scholar
  51. Redpath SM, Arroyo BE, Etheridge B, Leckie F, Bouwman K, Thirgood SJ (2002) Temperature and hen harrier productivity: from local mechanisms to geographical patterns. Ecography 25:533–540CrossRefGoogle Scholar
  52. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60CrossRefPubMedGoogle Scholar
  53. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113CrossRefGoogle Scholar
  54. Sekercioglu CH, Schneider SH, Fay JP, Loarie SR (2008) Climate change, elevational range shifts, and bird extinctions. Conserv Biol 22:140–150CrossRefPubMedGoogle Scholar
  55. Sergio F (2003) From individual behaviour to population pattern: weather-dependent foraging and breeding performance in black kites. Anim Behav 66:1109–1117CrossRefGoogle Scholar
  56. Studeny AC, Buckland ST, Harrison PJ, Illian JB, Magurran AE, Newson SE (2013) Fine-tuning the assessment of large-scale temporal trends in biodiversity using the example of British breeding birds. J Appl Ecol 50:190–198CrossRefGoogle Scholar
  57. Tingley MW, Koo MS, Moritz C, Rush AC, Beissinger SR (2012) The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Glob Chang Biol 18:3279–3290CrossRefGoogle Scholar
  58. Visser G (1998) Development of temperature regulation. In: Starck JM, Ricklefs RE (eds) Avian growth and development: evolution within the altricial-precocial spectrum. Oxford University Press, Oxford, pp 117–156Google Scholar
  59. Visser ME (2008) Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc R Soc B 275:649–659PubMedCentralCrossRefPubMedGoogle Scholar
  60. Wakeley J (1978) Activity budgets, energy expenditures, and energy intakes of nesting Ferruginous Hawks. Auk 95:667–676Google Scholar
  61. Watts SH (2014) A study of nesting sparrowhawks Accipiter nisus using video analysis. Bird Study 61:428–437CrossRefGoogle Scholar
  62. Wingfield JC (1984) Influence of weather on reproduction. J Exp Zool 232:589–594CrossRefPubMedGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  • Jakob Katzenberger
    • 1
    • 2
  • Gareth Tate
    • 1
  • Ann Koeslag
    • 1
  • Arjun Amar
    • 1
  1. 1.Department of Biological Sciences, Percy FitzPatrick Institute of African Ornithology, DST/NRF Centre of ExcellenceUniversity of Cape TownCape TownSouth Africa
  2. 2.University of Applied Sciences BremenBremenGermany

Personalised recommendations