Journal of Ornithology

, Volume 156, Issue 2, pp 469–479 | Cite as

The roles of environmental and geographic variables in explaining the differential wintering distribution of a migratory passerine in southern Europe

  • Juan Arizaga
  • Gerard Bota
  • David Mazuelas
  • Pablo Vera
Original Article

Abstract

In birds, spatial segregation between age or sex categories during the non-breeding period is a common phenomenon. The main single-factor hypotheses that have been stated to explain this are: (1) body-size variations (that result in more or less cold tolerance) interact with local climate, which promotes age- or sex-associated distributional optima; (2) the dominant age or sex monopolizes high-quality areas; and (3) the age or sex overwintering closer to breeding quarters does so due to the benefits of earlier arrival at the breeding quarters. Southern European countries host millions of birds from northern Europe during the winter period each year. In this work, we aimed to determine the ultimate causes (geographic location and distance to obligate migratory pathways, temperature and land use as a surrogate for food availability) explaining spatial segregation of Reed Buntings (Emberiza schoeniclus) by age and sex in winter. We used data from 38 sampling points across Iberia during the winter of 2011–2012. Reed Bunting abundance did not fit any of our possible models better than the null model, so we were unable to predict bird numbers across Iberia. Moreover, males were found to be predominant at sites close to presumably obligate migratory pathways (western/eastern Pyrenees). Body mass was higher in first-year birds and males, and tended to increase with distance to obligate migratory pathways, land use (in particular with a decreasing proportion of open habitats and urban areas), increasing minimum temperature, and decreasing mean temperature. Our data suggest that the increase in the proportion of males close to obligate migratory pathways is associated with the advantage to males in wintering as close as possible to breeding quarters.

Keywords

Farmland Migration pathway Population structure Emberiza schoeniclus 

Zusammenfassung

Die Rolle von Umwelt- und geographischen Variablen bei der Erklärung unterschiedlicher Winterverbreitungen eines ziehenden Sperlingsvogels in Südeuropa

Bei Vögeln ist eine räumliche Trennung von Altersgruppen oder Geschlechtern außerhalb der Brutsaison ein weit verbreitetes Phänomen. Dies sind die einen einzelnen Faktor berücksichtigenden Haupthypothesen, die zur Erklärung herangezogen worden sind: (1) Unterschiede in der Körpergröße (die zu einer geringeren oder höheren Toleranz niedriger Temperaturen führen) interagieren mit dem lokalen Klima, was alters- oder geschlechtsspezifische Verbreitungsoptima begünstigt, (2) das dominante Alter oder Geschlecht monopolisiert hochwertige Gebiete und (3) das Alter oder Geschlecht, das näher am Brutgebiet überwintert, kann die Vorteile einer früheren Ankunft im Brutgebiet ausnutzen. Millionen nordeuropäischer Vögel überwintern jedes Jahr in südeuropäischen Ländern. In dieser Arbeit wollten wir die ultimaten Ursachen (geographische Lage und Entfernung zu obligaten Zugwegen, Temperatur und Landnutzung als Stellvertreter für Nahrungsverfügbarkeit), welche die räumliche Trennung von Rohrammern (Emberiza schoeniclus) im Winter nach Alter und Geschlecht erklären, ermitteln. Wir haben Daten von 38 Beobachtungspunkten in ganz Spanien aus dem Winter 2011–2012 herangezogen. Keines der möglichen Modelle erklärte die Abundanz der Rohrammern besser als das Nullmodell, wodurch wir nicht in der Lage waren, die Zahlen der Vögel in Spanien vorherzusagen. Darüber hinaus fanden wir, dass in der Nähe vermutlich obligater Zugwege (westliche/östliche Pyrenäen) überwiegend Männchen auftraten. Die Körpermasse war bei einjährigen Vögeln und Männchen höher und neigte dazu, mit der Entfernung zu obligaten Zugwegen, stärkerer Landnutzung (besonders mit einem abnehmenden Anteil offener Habitate und urbaner Flächen), steigenden Mindesttemperaturen und abnehmenden Durchschnittstemperaturen zuzunehmen. Unsere Daten deuten darauf hin, dass die Zunahme des Männchenanteils in der Nähe obligater Zugwege damit zusammenhängt, dass es für die Männchen vorteilhaft ist, so nah wie möglich am Brutgebiet zu überwintern.

References

  1. Alerstam T (1993) Bird migration. Cambridge University Press, CambridgeGoogle Scholar
  2. Alves JA, Gunnarsson TG, Potts PM, Sutherland WJ, Gill JA (2013) Sex-biases in distribution and resource use at different spatial scales in a migratory shorebird. Ecol Evol 3:1079–1090PubMedCentralPubMedCrossRefGoogle Scholar
  3. Arizaga J, Alonso D, Fernández E, Martín D (2011) Population structure of migrating and wintering reed buntings Emberiza schoeniclus in Northern Iberia. Ardeola 58:287–301CrossRefGoogle Scholar
  4. Atienza JC, Copete JL (2003) Escribano palustre Emberiza schoeniclus. In: Martí R, Del Moral JC (eds) Atlas de las aves reproductoras de España. MIMAM-SEO/BirdLife, Madrid, pp 604–605Google Scholar
  5. Barton K (2014) MuMIn: multi-model inference. http://CRAN.R-project.org/package=MuMIn
  6. Belda EJ, Kvist L, Monrós JS, Ponnikas S, Torralvo C (2009) Uso de técnicas moleculares y análisis discriminantes para diferenciar mediante biometría dos subespecies de escribano palustre Emberiza schoeniclus. Ardeola 56:85–94Google Scholar
  7. Burnham KP, Anderson DR (1998) Model selection and inference. A practical information theoretic approach. Springer, New YorkGoogle Scholar
  8. Catry P, Campos A, Almada V, Cresswell W (2004) Winter segregation of migrant European robins Erithacus rubecula in relation to sex, age and size. J Avian Biol 35:204–209Google Scholar
  9. Catry P, Lecoq M, Araujo A, Conway G, Felgueiras M, King JMB, Rumsey S, Salima H, Tenreiro P (2005a) Differential migration of chiffchaffs Phylloscopus collybita and P. ibericus in Europe and Africa. J Avian Biol 36:184–190Google Scholar
  10. Catry P, Phillips R, Croxall JP (2005b) Sexual segregation in birds: patterns, processes and implications for conservation. In: Ruckstuhl KE, Neuhaus P (eds) Sexual segregation in vertebrates: ecology of the two sexes. Cambridge University Press, CambridgeGoogle Scholar
  11. Copete JL, Marine R, Bigas D, Martinez-Vilalta A (1999) Differences in wing shape between sedentary and migratory reed buntings Emberiza schoeniclus. Bird Study 46:100–103CrossRefGoogle Scholar
  12. Coppack T, Pulido F (2009) Proximate control and adaptive potential of protandrous migration in birds. Integr Comp Biol 49:493–506PubMedCrossRefGoogle Scholar
  13. Cramp S, Perrins CM (1994) Handbook of the birds of Europe, the Middle East and North Africa, vol 9. Oxford University Press, OxfordGoogle Scholar
  14. Cristol DA, Baker MB, Carbone C (1999) Differential migration revisited. Latitudinal segregation by age and sex class. In: Nolan VJ, Ketterson ED, Thompson CF (eds) Current ornithology, vol 15. Academic, New YorkGoogle Scholar
  15. Cuadrado M (1992) Year to year recurrence and site-fidelity of Blackcaps Sylvia atricapilla and Robins Erithacus rubecula in a Mediterranean wintering area. Ringing Migr 13:36–42CrossRefGoogle Scholar
  16. Cuadrado M (1995) Territory characteristics and the attacks against intruders in migrant robins Erithacus rubecula. Ardeola 42:147–160Google Scholar
  17. Dolman PM, Sutherland WJ (1995) The response of bird populations to habitat loss. Ibis 137:S38–S46CrossRefGoogle Scholar
  18. Ekman JB, Lilliendahl K (1993) Using priority to food access: fattening strategies in dominance-structured willow-tit (Parus montanus) flocks. Behav Ecol 4:232–238CrossRefGoogle Scholar
  19. Fretwell SD (1972) Populations in a seasonal environment. Princeton University Press, PrincetonGoogle Scholar
  20. Galarza A, Tellería JL (2003) Linking processes: effects of migratory routes on the distribution of abundance of wintering passerines. Anim Biodivers Conserv 26:19–27Google Scholar
  21. González M, Onrubia A, Ramírez J (2009) Características de la invernada de una población de escribano palustre en el Estrecho de Gibraltar (sur de España). Migres 1:73–80Google Scholar
  22. Gosler AG, Greenwood JJD, Baker JK, Davidson NC (1998) The field determination of body size and condition in passerines: a report to the British Ringing Committee. Bird Study 45:92–103CrossRefGoogle Scholar
  23. Jenni L, Winkler R (1994) Moult and ageing of European passerines. Academic, LondonGoogle Scholar
  24. Ketterson ED, Nolan V (1976) Geographic variation and its climatic correlates in the sex ratio of eastern-wintering dark-eyed juncos (Junc hyemalis hyemalis). Ecology 57:679–693CrossRefGoogle Scholar
  25. Ketterson ED, Nolan V (1979) Seasonal, annual, and geographic variation in sex ratio of wintering populations of dark-eyed juncos (Junco hyemalis). Auk 96:532–536Google Scholar
  26. Kettersson ED, Nolan V (1983) The evolution of differential bird migration. Curr Ornithol 1:357–402Google Scholar
  27. Kokko H (1999) Competition for early arrival in migratory birds. J Anim Ecol 68:940–950CrossRefGoogle Scholar
  28. Lundberg S, Alerstam T (1986) Bird migration patterns: conditions for stable geographical population segregation. J Theor Biol 123:403–414CrossRefGoogle Scholar
  29. Matessi G, Griggio M, Pilastro A (2002) The geographical distribution of populations of the large-billed subspecies of reed bunting matches that of its main winter food. Biol J Linn Soc 75:21–26CrossRefGoogle Scholar
  30. Møller AP (2004) Protandry, sexual selection and climate change. Glob Chang Biol 10:2028–2035CrossRefGoogle Scholar
  31. Moore FR, Mabey S, Woodrey M (2003) Priority access to food in migratory birds: age, sex and motivational asymmetries. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 281–291Google Scholar
  32. Morbey Y, Coppack T, Pulido F (2012) Adaptive hypotheses for protandry in arrival to breeding areas: a review of models and empirical tests. J Ornithol 153:207–215CrossRefGoogle Scholar
  33. Nebel S, Ydenberg RC (2005) Differential predator escape performance contributes to a latitudinal sex ratio cline in a migratory shorebird. Behav Ecol Sociobiol 59:44–50CrossRefGoogle Scholar
  34. Newton I (1980) The role of food in limiting bird numbers. Ardea 68:11–30Google Scholar
  35. Newton I (2008) The migration ecology of birds. Academic, LondonGoogle Scholar
  36. Ninyerola M, Pons X, Roure JM (2005) Atlas climático digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, BarcelonaGoogle Scholar
  37. Orłowski G (2005) Habitat use by breeding and wintering reed bunting Emberiza schoeniclus L. in farmland of Lower Silesia (SW Poland). Polish J Ecol 53:243–254Google Scholar
  38. Orlowski G, Czarnecka J (2007) Winter diet of reed bunting Emberiza schoeniclus in fallow and stubble fields. Agric Ecosyst Environ 118:244–248CrossRefGoogle Scholar
  39. Peach WJ, Siriwardena GM, Gregory RD (1999) Long-term changes in over-winter survival rates explain the decline of reed buntings Emberiza schoeniclus in Britain. J Appl Ecol 36:798–811CrossRefGoogle Scholar
  40. Pienkowski MW, Evans PR, Townshend DJ (1985) Leap-frog and other migration patterns of waders; a critique of the Alerstam and Högstedt hypothesis, and some alternatives. Ornis Scand 16:61–70CrossRefGoogle Scholar
  41. Prŷs-Jones RP (1984) Migration patterns of the reed bunting Emberiza schoeniclus and the dependence of wintering distribution on environmental conditions. Le Gerfaut 74:15–37Google Scholar
  42. R Development Core Team (2008). R: a language and environment for statistical computing. http://www.R-project.org
  43. Rubolini D, Boano G, Ferro G, Fasano S (2000) Sex-ratio nei dormitori invernali di migliarino di palude Emberiza schoeniclus in Piemonte. Riv Piem St Nat 21:315–325Google Scholar
  44. Senar JC, Borras A (2004) Sobrevivir al invierno: estrategias de las aves invernantes en la Península Ibérica. Ardeola 51:133–168Google Scholar
  45. Senar JC, Burton PJK, Metcalfe NB (1992) Variation in the nomadic tendency of a wintering finch Carduelis spinus and its relationship with body condition. Ornis Scand 23:63–72CrossRefGoogle Scholar
  46. Sherry TW, Holmes RT (1996) Winter habitat quality, population limitation, and conservation of Neotropical Nearctic migrant birds. Ecology 77:36–48Google Scholar
  47. Surmacki A (2004) Habitat use by reed bunting Emberiza schoeniclus in an intensively used farmland in Western Poland. Ornis Fenn 81:137–143Google Scholar
  48. Svensson L (1996) Guía para la identificación de los paseriformes europeos. Sociedad Española de Ornitología, MadridGoogle Scholar
  49. Tellería JL, Ramírez A, Pérez-Tris J (2005) Conservation of seed-dispersing migrant birds in Mediterranean habitats: shedding light on patterns to preserve processes. Biol Conserv 124:493–502CrossRefGoogle Scholar
  50. Tellería JL, Ramírez A, Pérez-Tris J (2008) Fruit tracking between sites and years by birds in Mediterranean wintering grounds. Ecography 31:381–388CrossRefGoogle Scholar
  51. Tellería JL, Ramírez A, Galarza A, Carbonell R, Pérez-Tris J, Santos T (2009) Do migratory pathways affect the regional abundance of wintering birds? A test in northern Spain. J Biogeogr 36:220–229CrossRefGoogle Scholar
  52. Villarán A (1999) Migración e invernada del escribano palustre (Emberiza schoeniclus) en España. Ardeola 46:71–80Google Scholar
  53. Villarán A, Pascual J (2003) Biometrics, sex ratio and migration periods of reed buntings Emberiza schoeniclus wintering in the Tajo Basin, Spain. Ringing Migr 21:222–226CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2014

Authors and Affiliations

  • Juan Arizaga
    • 1
  • Gerard Bota
    • 2
  • David Mazuelas
    • 1
  • Pablo Vera
    • 3
  1. 1.Department of OrnithologyAranzadi Sciences SocietyDonostia-S. SebastiánSpain
  2. 2.Biodiversity and Animal Conservation Lab (BAC-Lab), Àrea de BiodiversitatForest Sciences Center of Catalonia (CTFC)Solsona, CataloniaSpain
  3. 3.“Cavanilles” Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaPaterna, ValenciaSpain

Personalised recommendations