Skip to main content
Log in

Microclimate and microhabitat selection by the Alpine Rock Ptarmigan (Lagopus muta helvetica) during summer

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

The Alpine Rock Ptarmigan (Lagopus muta helvetica)—which is adapted to arctic and alpine environments—is suspected to be vulnerable to climate warming, but direct evidence is limited. Microclimates within a landscape may allow species to exist in regions where the general climate appears to be unsuitable for them. We therefore investigated the diversity of microclimates in alpine habitats used by the Alpine Rock Ptarmigan in summer, and we examined whether Alpine Rock Ptarmigan select places with a microclimate that facilitates heat dissipation during summer days. The study was done in the Haute-Savoie (northern French Alps), where ptarmigan have been equipped with radio transmitters, thus allowing direct observations. We measured the three microclimate variables which determine the thermal environment of an animal: ambient temperature (ground and air temperature), which defines the temperature gradients between the animal and the environment; wind speed, which determines convection; and solar radiation, which determines radiation uptake. Additional measurements at four contrasting microtopographic sites at five locations and at two random sites in July and August showed that the typical habitat of the Alpine Rock Ptarmigan offered a wide variety of microclimates over very short distances, particularly on hot summer days. Compared with control sites at 5 m and 30 m, Alpine Rock Ptarmigan selected places with a particular microtopography and microclimate: slightly cooler places in the shade that were protected from the wind; often small, north-facing depressions with a medium amount of rocks and diverse ground cover. The places selected by ptarmigan during hot summer days conformed well to the requirements of both heat dissipation and predator avoidance, and also offered food.

Zusammenfassung

Mikroklima und Mikrohabitatwahl beim Alpenschneehuhn ( Lagopus muta helvetica ) im Sommer

Das Alpenschneehuhn (Lagopus muta helvetica) ist an arktische und alpine Lebensräume angepasst. Deshalb wird es als empfindlich gegenüber den Auswirkungen der Klimaerwärmung betrachtet, doch sind direkte Nachweise selten. Mikroklimas in speziellen Habitaten können es Arten erlauben, in Gebieten vorzukommen, deren generelles Klima ungeeignet ist. Wir untersuchten die Vielfalt der Mikroklimas in den alpinen Habitaten des Alpenschneehuhns im Sommer und prüften, ob das Alpenschneehuhn an Sommertagen Plätze aufsucht, die eine gute Wärmeableitung ermöglichen. Die Studie fand in den französischen Alpen der Haute-Savoie statt, wo besenderte Vögel direkte Beobachtungen ermöglichten. Wir maßen die drei Mikroklimavariablen, die die thermische Umgebung des Vogels bestimmen: (a) Luft- und Bodentemperatur, die den thermischen Gradienten zwischen Tier und Umgebung bestimmen, (b) Windgeschwindigkeit, die die Konvektion bestimmt und (c) Sonneneinstrahlung. Zusätzliche Messungen an vier kontrastierenden mikrotopographischen Orten und an zufällig ausgewählten Orten ergaben, dass typische Habitate des Alpenschneehuhns eine grosse Vielfalt von Mikroklimas über kurze Distanzen bieten, vor allem an warmen Sommertagen. Die Alpenschneehühner suchten Plätze auf, die sich durch eine besondere Mikrotopographie und eine spezielles Mikroklima gegenüber Kontrollplätzen in 5 m und 30 m Distanz auszeichneten: etwas kühlere Plätze im Schatten und windgeschützt, oft in kleinen Mulden, die gegen Norden geöffnet waren, an Orten mit einer vielfältigen Bodenbedeckung mit Felsbrocken. Solche Plätze ermöglichen nicht nur eine gute Wärmeableitung, sondern sind auch ausgezeichnet zur Feindvermeidung und bieten Nahrung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4a–c

Similar content being viewed by others

References

  • Bakken GS, Buttemer WA, Dawson WR, Gates DM (1981) Heated taxidermic mounts: a means of measuring the standard operative temperature affecting small animals. Ecology 62:311–318

    Article  Google Scholar 

  • Bakken GS, Murphy MT, Erskine DJ (1991) The effect of wind and air temperature on metabolism and evaporative water loss rates of Dark-eyed Juncos, Junco hyemalis: a standard operative temperature scale. Physiol Zool 64:1023–1049

    Google Scholar 

  • Bates D (2005) Fitting linear mixed models in R—using the lme4 package. R News 5:27–30

  • Baur B, Baur A (2013) Snails keep the pace: shift in upper elevation limit on mountain slope as response to climate warming. Can J Zool 91:596–599

    Article  Google Scholar 

  • Bennie J, Huntley B, Wiltshire A, Hill MO, Baxter R (2008) Slope, aspect and climate: spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecol Modell 216:47–59. doi:10.1016/j.ecolmodel.2008.04.010

    Article  Google Scholar 

  • Bertermann C, Weber-Spoarenberg C, Pechura A, Renard AI, Bergmann HH (1998) Zur Ernährung von Alpenschneehühnern Lagopus mutus helveticus im Sommer. Egretta 41:15–26

    Google Scholar 

  • Carr JM, Lima SL (2014) Wintering birds avoid warm sunshine: predation and the costs of foraging in sunlight. Oecologia 174:713–721. doi:10.1007/s00442-013-2804-7

    Article  PubMed  Google Scholar 

  • Chamberlain D, Negro M, Caprio E, Rolando A (2013) Assessing the sensitivity of alpine birds to potential future changes in habitat and climate to inform management strategies. Biol Cons 167:127–135

    Article  Google Scholar 

  • Desmet JF (1988) Le lagopède alpin (Lagopus mutus helveticus, Thieneman 1829) dans les Alpes françaises septentrionales: descriptif de l’habitat en haute vallée du Giffre (Haute-Savoie, France). Actes du Colloque Galliformes de Montagne 129–161

  • Desmet JF (1994) Lagopède alpin. In: Yeatman-Berthelot D, Jarry G (eds) Nouvel Atlas des oiseaux nicheurs de France 1985–1989. Société Ornithologique de France, Paris, pp 216–217

    Google Scholar 

  • Desmet JF (2012) Lagopède alpin: eléments d’appréciation du succès de la reproduction en 2012. Rapport interne GRIFEM/ONCFS Sd74. Office National de la Chasse e de la Faune Sauvage, Paris

  • Desmet JF (in press) Quel avenir pour le Lagopède alpin en France? In: Gauthier-Clerc M, Mesleard F, Blondel J (ed) Sciences de la conservation. De Boeck, Brussels

  • Favaron M, Scherini GC, Preatoni D, Tosi G, Wauters LA (2006) Spacing behaviour and habitat use of rock ptarmigan (Lagopus mutus) at low density in the Italian Alps. J Ornithol 147:618–628. doi:10.1007/s10336-006-0087-z

    Article  Google Scholar 

  • Gillingham PK, Huntely B, Kunin WE, Thomas CD (2012) The effect of spatial resolution on projected responses to climate warming. Divers Distrib 18:990–1000

    Article  Google Scholar 

  • Glutz von Blotzheim UN, Bauer K, Bezzel E (1973) Handuch der Vögel Mitteleuropas, vol 5: Galliformes und Gruiformes. Akademische Verlagsgesellschaft, Frankfurt

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448

    Article  CAS  PubMed  Google Scholar 

  • Imperio S, Bionda R, Viterbi R, Provenzale A (2013) Climate change and human disturbance can lead to local extinction of Alpine Rock Ptarmigan: new insight from the western Italian Alps. PLoS ONE 8:e81598. doi:10.1371/journal.pone.0081598

  • Johnson R (1968) Temperature regulation in the white-tailed ptarmigan, Lagopus leucurus. Comp Biochem Physiol 24:1003–1014

    Article  CAS  PubMed  Google Scholar 

  • Keller V, Gerber A, Schmid H, Volet B, Zbinden N (2010) Rote Liste Brutvögel. Gefährdete Arten der Schweiz, Stand 2010. Umwelt-Vollzug Nr. 1019. Bundesamt für Umwelt, Bern, und Schweizerische Vogelwarte, Sempach

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Berlin, p 349

  • La Sorte FA, Jetz W (2010) Avian distributions under climate change: towards improved projections. J Exp Biol 213:862–869. doi:10.1242/jeb.038356

    Article  CAS  PubMed  Google Scholar 

  • Lenoir J, Gégout JC, Marquet PA, De Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771. doi:10.1126/science.1156831

    Article  CAS  PubMed  Google Scholar 

  • Mani M (1968) Ecology and biogeography of high altitude insects. W. Junk, The Hague, pp 32–42. doi: 10.1007/978-94-017-1339-9

  • Marti C, Bossert A (1985) Beobachtungen zur Sommeraktivität und Brutbiologie des Alpenschneehuhns Lagopus mutus im Aletschgebiet (Wallis). Ornithol Beob 82:153–168

    Google Scholar 

  • Mortensen A, Blix AS (1986) Seasonal changes in resting metabolic rate and mass-specific conductance in Svalbard Ptarmigan, Norwegian Rock Ptarmigan and Norwegian Willow Ptarmigan. Ornis Scand 17:8–13

    Article  Google Scholar 

  • Nievergelt B (1965) Der Alpensteinbock (Capra ibex) in seinem Lebensraum. Dissertation. University of Zürich, Zürich

  • Novoa C, Desmet JF (2011) Demographic traits of two alpine populations of Rock Ptarmigan. In: Sandercock BK, Martin K, Segelbacher G (eds) Ecology conservation and management of grouse. University of California Press, Los Angeles, pp 267–280

  • Novoa C, Desmet JF, Muffat-Joly B, Arvin-Bérod M, Belleau E, Birck C, Losinger I (2014) Le lagopède alpin en Haute-Savoie, biologie des populations et impact des activités humaines. ONCFS/Asters/GRIFEM, Paris

    Google Scholar 

  • Pauli H, Gottfried M, Grabherr G (2003) Effects of climate change on the alpine and nival vegetation of the Alps. J Mountain Ecol 7:9–12

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Revermann R, Schmid H, Zbinden N, Spaar R, Schröder B (2012) Habitat at the mountain tops: how long can Rock Ptarmigan (Lagopus muta helvetica) survive rapid climate change in the Swiss Alps? A multi-scale approach. J Ornithol 153:891–905. doi:10.1007/s10336-012-0819-1

    Article  Google Scholar 

  • Scherini G, Tosi G, Wauters LA (2003) Social behaviour, reproductive biology and breeding success of Alpine Rock Ptarmigan Lagopus mutus helveticus in northern Italy. Ardea 91:11–24

  • Scherrer D, Körner C (2010) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob Chang Biol 16:2602–2613. doi:10.1111/j.1365-2486.2009.02122.x

    Google Scholar 

  • Schweiger AK, Nopp-Mayr U, Zohmann M (2012) Small-scale habitat use of black grouse (Tetrao tetrix L.) and rock ptarmigan (Lagopus muta helvetica Thienemann) in the Austrian Alps. Eur J Wildl Res 58:35–45. doi:10.1007/s10344-011-0537-7

    Article  Google Scholar 

  • Smith SE, Gregory RD, Anderson BJ, Thomas CD (2013) The past, present and potential future distribution of cold-adapted bird species. Divers Distrib 19:352–362. doi:10.1111/ddi.12025

    Article  Google Scholar 

  • Speakman JR, Król E (2010) Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J Anim Ecol 79:726–746. doi:10.1111/j.1365-2656.2010.01689.x

    PubMed  Google Scholar 

  • Suggitt AJ, Gillingham PK, Hill JK, Huntley B, Kunin WE, Roy DB, Thomas CD (2011) Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120:1–8

    Article  Google Scholar 

  • Veghte JH, Herreid CF II (1965) Radiometric determination of feather insulation and metabolism of arctic birds. Physiol Zool 38:267–275

    Google Scholar 

  • Vittoz P, Cherix D, Gonsetz Y, Lubini V, Maggini R, Zbinden N, Zumbach S (2013) Climate change impacts on biodiversity in Switzerland: a review. J Nature Cons 21:154–162

    Article  Google Scholar 

  • Walsberg G, Wolf B (1995) Solar heat gain in a desert rodent: unexpected increases with wind speed and implications for estimating the heat balance of free-living animals. J Comp Physiol B 165:306–314

    Article  CAS  PubMed  Google Scholar 

  • Walther G, Beissner S, Burga C (2005) Trends in the upward shift of alpine plants. J Veg Sci 16:541–548

    Article  Google Scholar 

  • West GC (1972) Seasonal differences in resting metabolic rate of Alaskan ptarmigan. Comp Biochem Physiol A Comp Physiol 42:867–876

    Article  CAS  PubMed  Google Scholar 

  • Wilson J (1959) Notes on wind and its effects in arctic-alpine vegetation. J Ecol 47:415–427

    Article  Google Scholar 

  • Wilson S, Martin K (2008) Breeding habitat selection of sympatric White-tailed, Rock and Willow Ptarmigan in the southern Yukon Territory, Canada. J Ornithol 149:629–637. doi:10.1007/s10336-008-0308-8

    Article  Google Scholar 

  • Wolf B, Walsberg G (1996) Thermal effects of radiation and wind on a small bird and implications for microsite selection. Ecology 77:2228–2236

    Article  Google Scholar 

  • Wolfe D, Larsson L (2011) Investigating the importance of thermal refugia for white-tailed ptarmigan at the southern extent of their range. Grouse News 41:22–24

    Google Scholar 

  • Young K, Woo M, Edlund S (1997) Influence of local topography, soils, and vegetation on microclimate and hydrology at a high Arctic site, Ellesmere Island, Canada. Arct Alp Res 29:270–284

    Article  Google Scholar 

  • Zohmann M, Wöss M (2008) Spring density and summer habitat use of alpine rock ptarmigan Lagopus muta helvetica in the southeastern Alps. Eur J Wildl Res 54:379–383. doi:10.1007/s10344-007-0149-4

    Article  Google Scholar 

  • Zohmann M, Pennerstorfer J, Nopp-Mayr U (2013) Modelling habitat suitability for alpine rock ptarmigan (Lagopus muta helvetica) combining object-based classification of IKONOS imagery and Habitat Suitability Index modelling. Ecol Modell 254:22–32. doi:10.1016/j.ecolmodel.2013.01.008

    Article  Google Scholar 

Download references

Acknowledgments

We warmly thank the group ONCFS Sd74/GRIFEM for their collaboration and for allowing us to track the birds they equipped with radiotransmitters. We thank Roland and Elisabeth Mogenier for their hospitality at the refuge de Sales. We thank Christian Marti for introducing LV and CP to the ptarmigan and for many helpful comments when planning the study. We thank Beat Naef-Daenzer, Christian Marti, and Niklaus Zbinden, as well as three reviewers for many helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Visinoni.

Additional information

Communicated by F. Bairlein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visinoni, L., Pernollet, C.A., Desmet, JF. et al. Microclimate and microhabitat selection by the Alpine Rock Ptarmigan (Lagopus muta helvetica) during summer. J Ornithol 156, 407–417 (2015). https://doi.org/10.1007/s10336-014-1138-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-014-1138-5

Keywords

Navigation