Journal of Ornithology

, Volume 156, Issue 1, pp 247–256 | Cite as

Breeding origin and spatial distribution of migrant and resident harriers in a Mediterranean wintering area: insights from isotopic analyses, ring recoveries and species distribution modelling

  • Laura Cardador
  • Joan Navarro
  • Manuela G. Forero
  • Keith A. Hobson
  • Santi Mañosa
Original Article

Abstract

Variation in avian migratory behaviour is widespread, not only among species but also within species, and can involve shifts from sedentary at low latitudes to migratory at high latitudes. This leads to a situation whereby non-migratory populations of a species at lower latitudes are periodically joined by migratory conspecifics during winter. Determining spatio-temporal dynamics in distribution and structure of different populations is crucial to our understanding of their ecology and interactions, but it is often difficult or impossible to separate resident from migrant populations. Here, we used the winter distribution of Marsh Harrier (Circus aeruginosus) in the Iberian Peninsula (southwest Europe) to analyse the potential of spatial distribution models and stable isotope analyses of feathers (deuterium, δ2H) to evaluate differences in spatial distribution of migrant and resident raptor populations in southern Europe. Overall, ring recoveries and isotopic assignment showed that most migrant harriers wintering in the Iberian Peninsula had a central and northern latitudinal European origin. Our results revealed segregation in the winter distribution of migrant and resident Marsh Harrier populations in the Iberian Peninsula. These results have important conservation implications, suggesting that ecological conditions and potential stressors could greatly differ among resident and migrant populations in winter. Our approach provided a useful methodological procedure to evaluate the wintering spatial segregation of European populations of a raptor species and presents a new challenge to the study of their ecological consequences.

Keywords

Deuterium Distribution modelling Europe Migration Raptors Ring recoveries Stable isotopes 

Zusammenfasung

Herkunft und räumliche Verteilung von ziehenden und nicht-ziehenden Weihen in einem mediterranen Überwinterungsgebiet: Erkenntnisse aus Isotopen-Analysen, Ring-Wiederfunden und Modellen zur Art-Verteilung

Unterschiede im Zugverhalten sind bei Vögeln nicht nur zwischen verschiedenen Arten sondern auch innerhalb einer Art weit verbreitet und können einhergehen mit Verschiebungen von „Standvogel“in niedrigen Breiten bis hin zu „Zugvogel“in hohen Breiten. Das führt zu einer Situation, in der nicht-ziehende Populationen einer Art in niedrigeren Breiten im Winter regelmäßig zusammen treffen mit ziehenden Individuen derselben Art. Die raum-zeitliche Dynamik in Verteilung und Struktur verschiedener Populationen aufzudecken ist wesentlich für unser Verständnis ihrer Ökologie und Interaktionen. Aber es ist oft schwierig oder unmöglich, die ziehenden und nicht-ziehenden Populationen zu unterscheiden. Hier analysierten wir anhand der Winterverteilung von Rohrweihen (Circus aeruginosus) auf der iberischen Halbinsel das Potential von räumlichen Verteilungsmodellen und der Analyse von stabilen Isotopen aus Federn (Deuterium), Unterschiede in der räumlichen Verteilung zwischen ziehenden und nicht-ziehenden Greifvogel-Populationen in Südeuropa zu bewerten. Insgesamt zeigten Ring-Wiederfunde und Zuordnungen anhand von Isotopenanalysen, dass die meisten ziehenden Weihen, die auf der iberischen Halbinsel überwinterten, aus zentralen und nördlichen europäischen Breiten stammten. Unsere Ergebnisse deckten eine Trennung der Winter-Verteilung der Populationen ziehender und nicht-ziehender Rohrweihen auf der iberischen Halbinsel auf. Diese Ergebnisse haben wichtige Folgen für den Vogelschutz, da sie darauf hindeuten, dass ökologische Bedingungen und potentielle Stressoren im Winter sich stark unterscheiden könnten zwischen ziehenden und nicht-ziehenden Populationen. Unser Ansatz stellte ein nützliches methodisches Verfahren zur Verfügung, um die räumliche Trennung europäischer Populationen einer Greifvogel-Art im Überwinterungsgebiet aufzudecken und zeigt eine neue Herausforderung auf für die Untersuchung ihrer ökologischen Konsequenzen.

References

  1. Agostini N, Panuccio M (2010) Western Marsh harrier (Circus aeruginosus) migration through the Mediterranean sea: a review. J Raptor Res 44:136–142CrossRefGoogle Scholar
  2. Alerstam T (1990) Bird migration. Cambridge University Press, CambridgeGoogle Scholar
  3. Archaux F, Balanca G, Henry PY, Zapata G (2004) Wintering of white storks in mediterranean France. Waterbirds 27:441–445CrossRefGoogle Scholar
  4. Bavoux C, Burneleau G, Nicolau-Guillaumet P, Picard M (1994) Le Busard des roseaux Circus a. aeruginosus en charente-maritime (France). VII– Déplacements et activité journalière des adultes en hiver. Alauda 62:281–288Google Scholar
  5. Berthold P (2001) Bird migration: a general survey, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  6. Bildstein K (2006) Migrating raptors of the world: their ecology and conservation. Comstock, SacramentoGoogle Scholar
  7. BirdLife International (2004) Birds in Europe: population estimates, trends and conservation status. BirdLife conservation series no. 12. BirdLife International, CambridgeGoogle Scholar
  8. Bowen GJ, Wassenaar LI, Hobson KA (2005) Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143:337–348PubMedCrossRefGoogle Scholar
  9. Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev Camb Ohilos Soc 80:205–225CrossRefGoogle Scholar
  10. Bullock JM, Kenward RE, Hails RS (2002) Dispersal ecology. Blackwell, MaldenGoogle Scholar
  11. Cardador L, Mañosa S (2011) Foraging habitat use and selection of western marsh harriers (Circus aeruginosus) in intensive agricultural landscapes. J Raptor Res 45:168–173CrossRefGoogle Scholar
  12. Cardador L, Mañosa S, Varea A, Bertolero A (2009) Ranging behaviour of marsh harriers Circus aeruginosus in agricultural landscapes. Ibis 151:766–770CrossRefGoogle Scholar
  13. Cardador L, Bonfil J, Estrada J, Mañosa S, Varea A (2011) L’arpella vulgar (Circus aeruginosus). In: Herrando S, Brotons Ll, Estrada J, Guallar S, Anton M (eds) Atles dels ocells de Catalunya a l’hivern 2006–2009. Lynx, Bellaterra, pp 210–211Google Scholar
  14. Cardador L, Sardà-Palomera F, Carrete M, Mañosa S (2014) Incorporating spatial constraints in different periods of the annual cycle improves species distribution model performance for a highly mobile bird species. Divers Distrib 20:515–528CrossRefGoogle Scholar
  15. Chamberlain CP, Blum JD, Holmes RT, Feng X, Sherrry TW, Graves GR (1997) The use of isotope tracers for identifying populations of migratory birds. Oecologia 109:132–141CrossRefGoogle Scholar
  16. Chernetsov N (2012) Passerine migration: stopovers and flight. Springer, BerlinCrossRefGoogle Scholar
  17. Cramp S, Simmons KEL (1994) Handbook of the birds of Europe the Middle East and North Africa. The birds of the Western Paleartic. Hawks to Bustards, Vol. II edn. Oxford University Press, OxfordGoogle Scholar
  18. Ginn HB, Melville DS (1983) Moult in birds. BTO Guide 19. British Trust for Ornithology, EnglandGoogle Scholar
  19. Guillemain M, Van Wilgenburg SL, Legagneux P, Hobson KA (2014) Assessing geographic origins of Teal (Anas crecca) through stable-hydrogen (δ2H) isotope analyses of feathers and ring-recoveries. J Ornithol 155:165–172CrossRefGoogle Scholar
  20. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  21. Harrison XA, Blount JD, Inger R, Norris DR, Bearhop S (2011) Carry-over effects as drivers of fitness differences in animals. J Anim Ecol 80:4–18PubMedCrossRefGoogle Scholar
  22. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978Google Scholar
  23. Hobson KA, Wassenaar LI (2008) Tracking animal migration using stable isotopes. Academic, LondonGoogle Scholar
  24. Hobson KA, DeMent SH, Van Wilgenburg SL, Wassenaar LI (2009a) Origins of American Kestrels wintering at two southern US sites: an investigation using stable-isotope (δD, δ18O) methods. J Raptor Res 43:325–337CrossRefGoogle Scholar
  25. Hobson KA, Lormée H, Van Wilgenburg SL, Wassenaar LI, Boutin JM (2009b) Stable isotoped (δD) delineate the origins and migratory connectivity of harvested animals: the case of European woodpigeons. J Appl Ecol 46:572–581CrossRefGoogle Scholar
  26. Hobson KA, Van Wilgenburg SL, Wassenaar LI, Powell RL, Still CJ, Craine JM (2012) A multi-isotope (δ13C, δ15N, δ2H) feather isoscape to assign Afrotropical migrant birds to origins. Ecosphere 3:art44Google Scholar
  27. Klaassen RHG, Strandberg R, Hake M, Olofsson P, Tøttrup AP, Alerstam T (2010) Loop migration in adult marsh harriers Circus aeruginosus, as revealed by satellite telemetry. J Avian Biol 41:200–207CrossRefGoogle Scholar
  28. Klaassen RHG, Hake M, Strandberg R, Koks BJ, Trierweiler C, Exo K-M, Bairlein F, Alerstam T (2014) When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking raptors. J Anim Ecol 83:176–184PubMedCrossRefGoogle Scholar
  29. Limiñana R, Romero M, Mellone U, Urios V (2012) Mapping the migratory routes and wintering areas of Lesser Kestrels Falco naumanni: new insights from satellite telemetry. Ibis 154:389–399CrossRefGoogle Scholar
  30. Lott CA, Smith JP (2006) A geographic-information-system approach to estimating the origin of migratory raptors in North America using stable hydrogen isotope ratios in feathers. Auk 123:822–835CrossRefGoogle Scholar
  31. Mañosa S, Mateo R, Guitart R (2001) A review of the effects of agricultural and industrial contamination on the Ebro delta biota and wildlife. Environ Monit Assess 71:187–205PubMedCrossRefGoogle Scholar
  32. Marra PP, Hobson KA, Holmes RT (1998) Linking winter and summer events in a migratory bird by using stable-carbon isotopes. Science 282:1884–1886PubMedCrossRefGoogle Scholar
  33. Marra PP, Hunter D, Perrault AM (2011) Migratory connectivity and the conservation of migratory animals. Environ Law 41:317–354Google Scholar
  34. Mateo R, Estrada J, Paquet JY, Riera X, Domínguez L, Guitart R, Martínez-Vilalta A (1999) Lead shot ingestion by marsh harriers Circus aeruginosus from the Ebro delta, Spain. Environ Pollut 104:435–440CrossRefGoogle Scholar
  35. Mellone U, López-López P, Limiñana R, Piasevoli G, Urios V (2013) The trans-equatorial loop migration system of Eleonora’s falcon: differences in migration patterns between age classes, regions and seasons. J Avian Biol 5:417–426Google Scholar
  36. Mettler R, SchaeferHM ChernetsovN, FiedlerW Hobson KA, Ilieva M, Imhof E, Johnsen A, Renner SC, Rolshausen G, Serrano D, Wesołowski T, Segelbacher G (2013) Contrasting patterns of genetic differentiation among blackcaps (Sylvia atricapilla) with divergent migratory orientations in Europe. PLoS ONE 8(11):e81365PubMedCentralPubMedCrossRefGoogle Scholar
  37. Molina B, Martínez F (2008) El aguilucho lagunero en España. Población en 2006 y métodos de censo. Seo/BirdLife, MadridGoogle Scholar
  38. Newton I, Dale L (1996) Relationship between migration and latitude among west European birds. J Anim Ecol 65:137–146CrossRefGoogle Scholar
  39. Ninyerola M, Pons X, Roure JM (2005) Atlas climático digital de la Península Ibérica: metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, BarcelonaGoogle Scholar
  40. Panuccio M, Mellone U, Muner L (2013) Differential wintering area selection in Eurasian Marsh harrier (Circus aeruginosus): a ringing recoveries analysis. Bird Study 60:52–59CrossRefGoogle Scholar
  41. Pérez GE, Hobson KA (2009) Winter habitat use by Loggerhead Shrikes (Lanius ludovicianus) in Mexico: separating migrants from residents using stable isotopes. J Ornithol 150:459–467CrossRefGoogle Scholar
  42. Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175CrossRefGoogle Scholar
  43. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  44. Procházka P, Van Wilgenburg SL, Neto JM, Yosef R, Hobson KA (2013) Using stable hydrogen isotopes (δ2H) and ring recoveries to trace natal origins in a Eurasian passerine with a migratory divide. J Avian Biol 44:541–550CrossRefGoogle Scholar
  45. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing software, ViennaGoogle Scholar
  46. Real J, Mañosa S (2001) Dispersal of juvenile and immature Bonelli’s eagles in northeastern Spain. J Raptor Res 35:9–14Google Scholar
  47. Robinson WD, Bowlin MS, Bisson I, Shamoun-Baranes J, Thorup K, Diehl RH, Kunz DH, Mabey S, Winkler DW (2010) Integrating concepts and technologies to advance the study of bird migration. Front Ecol Environ 8:354–361CrossRefGoogle Scholar
  48. Smith RB, Meehan TD, Wolf BO (2003) Assessing migration patterns of sharp-shinned hawks Accipiter striatus using stable-isotope and band encounter analysis. J Avian Biol 34:387–392CrossRefGoogle Scholar
  49. Sternalski A, Bavoux C, Burneleau G, Bretagnolle V (2008) Philopatry and natal dispersal in a sedentary population of western marsh harrier. J Zool 274:188–197CrossRefGoogle Scholar
  50. Strandberg R, Klaassen RHG, Hake M, Olofsson P, Thorup K, Alerstam T (2008) Complex timing of Marsh harrier Circus aeruginosus migration due to pre- and post-migratory movements. Ardea 96:159–173CrossRefGoogle Scholar
  51. Thomson RL, Forsman JT, Mönkkönen M (2003) Positive interactions between migrant and resident birds: testing the heterospecific attraction hypothesis. Oecologia 134:431–438PubMedCrossRefGoogle Scholar
  52. Waldenström J, Bensch S, Kiboi S, Hasselquist D, Ottosson U (2002) Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol Ecol 11:1545–1554PubMedCrossRefGoogle Scholar
  53. Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611CrossRefGoogle Scholar
  54. Wassenaar LI, Hobson KA (2003) Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isot Environ Healt S 39:211–217CrossRefGoogle Scholar
  55. Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT (2002) Links between worlds: unraveling migratory connectivity. Trends Ecol Evol 17:76–83CrossRefGoogle Scholar
  56. Wunder MB, Norris DR (2008) Improved estimates of certainty in stable-isotope-based methods for tracking migratory animals. Ecol Appl 18:549–559PubMedCrossRefGoogle Scholar
  57. Zwarts L, Bijlsma RB, van der Kamp J, Wymenga E (2009) Eurasian Marsh harrier Circus aeruginosus. In: Zwarts L, Bijlsma RB, van der Kamp J, Wymenga E (eds) Living on the edge: wetlands and birds in changing Sahel. KNNV, Zeist, pp 304–311Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2014

Authors and Affiliations

  • Laura Cardador
    • 1
    • 2
  • Joan Navarro
    • 4
  • Manuela G. Forero
    • 4
  • Keith A. Hobson
    • 5
  • Santi Mañosa
    • 2
  1. 1.Forest Sciences Center of Catalonia (CTFC)SolsonaSpain
  2. 2.Departament de Biologia Animal, Institut de Recerca de la Biodiversitat (IRBio)Universitat de Barcelona, Facultat de BiologiaBarcelonaSpain
  3. 3.Institut de Ciències del Mar (ICM-CSIC)BarcelonaSpain
  4. 4.Departamento Biología de la ConservaciónEstación Biológica de Doñana (EBD-CSIC)SevilleSpain
  5. 5.Environment CanadaSaskatoonCanada

Personalised recommendations