Journal of Ornithology

, Volume 155, Issue 4, pp 1027–1035 | Cite as

Disentangling the origin of crossbills using morphology and isotopic (δ2H) characters. Are southern European crossbills restricted to population-specific key resources?

Original Article

Abstract

Specialist foragers depend on specific prey commonly associated with limited habitat, which is often patchily distributed. Understanding how specialists use habitat patches is important to their conservation. Crossbills (Loxia spp.) are one of the best examples of a foraging specialist, because they exploit population-specific conifer species. In this work, we used morphology and stable isotopic analyses (δ2H) to test the use of two different key conifer species (Pinus spp.) by crossbills. This study was conducted in Spain to test whether a small patch of Aleppo pine (P. halepensis) from the Ebro Valley hosted native, resident common crossbill (L. curvirostra) populations or, by contrast, if it was used just as a “stopover” or a passage site between the two main mountain ranges situated to the north and south of this valley, which is mostly occupied by Scots pine (P. sylvestris). Crossbills caught at the Ebro Valley used this zone only temporarily, thus supporting the lack of a stable, strictly resident population. Morphological and isotopic analyses revealed that these birds were likely to belong to an Aleppo pine-associated population, and likely not to Scots pine crossbills moving between the Pyrenees and the Iberian System. Therefore, we observed evidence supporting high foraging specialization and population-specific use of key conifer resources in Spain. This work highlights the usefulness of combining morphological and stable isotopic analysis to infer the origin and possible movement patterns of crossbill populations.

Keywords

Aleppo pine Ebro valley Iberian system Pyrenees Scots pine 

Zusammenfassung

Mit Morphologie und Isotopenmerkmalen (δ2H) der Herkunft von Kreuzschnäbeln auf der Spur: sind südeuropäische Kreuzschnäbel auf populationsspezifische Schlüsselressourcen beschränkt?

Nahrungsspezialisten hängen von spezifischen Beutetieren oder Futterquellen ab, deren Vorkommen normalerweise an einen begrenzten Habitattyp gebunden und daher oft lückenhaft verteilt ist. Zu verstehen, wie diese Spezialisten Habitaträume nutzen, ist wichtig für deren Schutz. Kreuzschnäbel (Loxia spp.) gehören zu den besten Beispielen für einen Nahrungsspezialisten, da sie sich von populationsspezifischen Koniferenarten ernähren. In dieser Studie kombinierten wir Morphologie und die Analyse Stabiler Isotope (δ2H), um die Nutzung zweier verschiedener Hauptkoniferenarten (Pinus spp.) durch die Kreuzschnäbel zu erforschen. Die Untersuchung fand in Spanien statt und sollte klären, ob ein kleines Aleppokiefernwäldchen (P. halepensis) im Ebrotal ortsansässige Kreuzschnabelpopulationen (L. curvirostra) beherbergt oder ob dieses stattdessen nur als „Zwischenstopp“oder Durchzugsgebiet zwischen den beiden nördlich und südlich des Tales gelegenen, überwiegend mit Waldkiefern (P. sylvestris) bestandenen, Gebirgszügen dient. Im Ebrotal gefangene Kreuzschnäbel nutzten diese Region nur vorübergehend, was für das Fehlen einer stabilen, streng ortstreuen Population spricht. Morphologie und Isotopenanalysen zeigten, dass diese Vögel wahrscheinlich zu einer mit Aleppokiefern assoziierten Population gehörten und wohl eher nicht zu den Waldkiefern-Kreuzschnäbeln, die sich zwischen den Pyrenäen und dem Iberischen Gebirge bewegen. Unsere Beobachtungen liefern daher unterstützende Hinweise auf eine Nahrungsspezialisierung und eine populationsspezifische Nutzung wichtiger Koniferenressourcen in Spanien. Diese Arbeit unterstreicht außerdem die Nützlichkeit eines kombinierten Ansatzes aus Morphologie und der Analyse Stabiler Isotope bei der Erforschung der Ursprünge und möglicher Bewegungsmuster von Kreuzschnabelpopulationen.

References

  1. Alonso D, Arizaga J (2005) Efecto de la edad, el sexo y el tiempo en la biometría del piquituerto común (Loxia curvirostra curvirostra) en Navarra. Munibe 56:133–144Google Scholar
  2. Alonso D, Arizaga J (2011) Seasonal patterns of breeding, moulting, and body mass variation in Pyrenean Common Crossbills Loxia curvirostra curvirostra. Ringing Migr 26:64–70CrossRefGoogle Scholar
  3. Alonso D, Arizaga J, Miranda R, Hernandez MA (2006) Morphological diversification of common crossbill Loxia curvirostra populations within Iberia and the Balearics. Ardea 94:99–107Google Scholar
  4. Benkman CW (1987) Crossbill foraging behaviour, bill structure, and patterns of food profitability. Wilson Bull 99:351–368Google Scholar
  5. Benkman CW (1993) Adaptation to single resources and the evolution of crossbill (Loxia) diversity. Ecol Monogr 63:305–325CrossRefGoogle Scholar
  6. Benkman CW (2003) Divergent selections drives the adaptive radiation of crossbills. Evolution 57:1176–1181PubMedCrossRefGoogle Scholar
  7. Borras A, Senar JC (2003) Piquituerto común, Loxia curvirostra. In: Martí R, Del Moral JC (eds) Atlas de las aves reproductoras de España. DGCN-SEO/BirdLife, Madrid, pp 588–589Google Scholar
  8. Borrás A, Cabrera J, Senar JC (2008) Local divergence between Mediterranean crossbills occurring in two different species of pine. Ardeola 55:169–177Google Scholar
  9. Bowen GJ, Wassenaar LI, Hobson KA (2005) Global application of stable hydrogen and oxygen isotopes to wildlife forenscis. Oecologia 143:337–348PubMedCrossRefGoogle Scholar
  10. Clouet M (2000) The breeding biology of the common crossbill loxia curvirostra in the Central Pyrenees. Bird Study 47:186–194CrossRefGoogle Scholar
  11. Cramp S, Perrins CM (1993) Handbook of the birds of Europe, the Middle East and North Africa, vol 7. Oxford University Press, OxfordGoogle Scholar
  12. Edelaar P, Terpstra K (2004) The nominate subspecies of the Common Crossbill Loxia c. curvirostra polytypic? I. Morphological differences among years at a single site. Ardea 92:93–102Google Scholar
  13. Edelaar P, Alonso D, Lagerveld S, Senar JC, BjÖRklund M (2012) Population differentiation and restricted gene flow in Spanish crossbills: not isolation-by-distance but isolation-by-ecology. J Evol Biol 25:417–430PubMedCrossRefGoogle Scholar
  14. Groth JG (1993) Evolutionary differentiation in morphology, vocalizations, and allozymes among nomadic sibling species in the North American red crossbill (Loxia curvirostra) complex. Univ Calif Publ Zool 127:1–143Google Scholar
  15. Hobson KA (2008) Applying isotopic methods to tracking animal movementsw. In: Hobson KA, Wassenaar LI (eds) Tracking animal migration using stable isotopes. Academic Press, London, pp 45–78CrossRefGoogle Scholar
  16. Hobson KA, Wassenaar LI (1997) Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia 109:142–148CrossRefGoogle Scholar
  17. Hobson KA, Wassenaar LI (2008) Tracking animal migration using stable isotopes. Academic Press, LondonGoogle Scholar
  18. Hobson K, Bowen G, Wassenaar L, Ferrand Y, Lormee H (2004) Using stable hydrogen and oxygen isotope measurements of feathers to infer geographical origins of migrating European birds. Oecologia 141:477–488PubMedCrossRefGoogle Scholar
  19. Hobson KA, Van Wilgenburg SL, Moller AP (2012) A multi-isotope (δ13C, δ15N, δ2H) approach to connecting European breeding and African wintering populations of barn swallow (Hirundo rustica). Anim Migr 1:8–22Google Scholar
  20. Jenni L, Winkler R (1994) Moult and ageing of European passerines. Academic Press, LondonGoogle Scholar
  21. Knox AG (1976) The taxonomic status of the scottish crossbill Loxia sp. Bull Br Ornithol Club 96:15–19Google Scholar
  22. Marquiss M, Newton IAN, Hobson KA, Kolbeinsson Y (2012) Origins of irruptive migrations by Common Crossbills Loxia curvirostra into northwestern Europe revealed by stable isotope analysis. Ibis 154:400–409CrossRefGoogle Scholar
  23. Newton I (2003) Speciation and biogeography of birds. Academic Press, LondonGoogle Scholar
  24. Newton I (2006) Movement patterns of Common Crossbills Loxia curvirostrain Europe. Ibis 148:782–788CrossRefGoogle Scholar
  25. Prochazka P, Van Wilgenburg SL, Neto JM, Yosef R, Hobson KA (2013) Using stable hydrogen isotopes (delta H-2) and ring recoveries to trace natal origins in a Eurasian passerine with a migratory divide. J Avian Biol 44:541–550CrossRefGoogle Scholar
  26. Sampietro FJ (1998) Aves de Aragón. Atlas de especies nidificantes. Gobierno de Aragón, ZaragozaGoogle Scholar
  27. Senar JC, Borras A, Cabrera T, Cabrera J (1993) Testing for the relationship between coniferous crop stability and Common Crossbill residence. J Field Ornithol 64:464–469Google Scholar
  28. Summers RW (2002) Cone sizes of Scots pines Pinus sylvestris in the Highlands of Scotland—implications for pine-eating crossbills Loxia spp. in winter. For Ecol Manag 164:303–305CrossRefGoogle Scholar
  29. Summers RW, Jardine DC, Marquiss M, Rae R (2002) The distribution and habitats of crossbills Loxia spp. in Britain, with special reference to the Scottish Crossbill Loxia scotica. Ibis 144:393–410CrossRefGoogle Scholar
  30. Svensson L (1996) Guía para la identificación de los paseriformes europeos. Sociedad Española de Ornitología, MadridGoogle Scholar
  31. Wassenaar LI, Hobson KA (2003) Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isot Environ Health Stud 39:211–217CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2014

Authors and Affiliations

  1. 1.Department of OrnithologyAranzadi Sciences SocietyDonostia-S. SebastiánSpain
  2. 2.Environment CanadaSaskatoonCanada

Personalised recommendations