Journal of Ornithology

, Volume 155, Issue 4, pp 905–917 | Cite as

Rainfall on wintering grounds affects population change in many species of Afro-Palaearctic migrants

  • Nancy Ockendon
  • Alison Johnston
  • Stephen R. Baillie
Original Article

Abstract

Survival and population growth rates in several species of Afro-Palaearctic migrant have been shown to correlate with rainfall regimes and/or vegetation level on their African wintering grounds, implying that seasonal food resources may contribute to population limitation. Here we explore the generality of this relationship across 16 migrant species breeding in England by investigating the proportion of variability in annual population change that is explained by the impact of environmental variables on wintering and staging grounds over 25- and 40-year time periods. In the 40-year time-series, rainfall in the arid Sahel region of West Africa had the strongest and most consistent effects on migrant populations, positively influencing the population growth rate in six of nine species which winter in this area and in three of seven species that use the region during their migratory passage but which over-winter further south. The effects of precipitation in other regions of Africa and satellite-derived measures of vegetation quality in all regions were weaker and less consistent in direction. Over the 25-year period for which data on both rainfall and vegetation were available, 12 of the 16 study species showed significant weather effects; the mean deviance explained by environmental variables among these 12 species was 32 %, increasing to 41 % when density-dependence was added to the models. For the 40-year time period, 11 species showed significant effects of rainfall, with the mean deviance explained by environmental variables of 14 % (23 % including density-dependence). Our results demonstrate that in many long-distance migrant species, precipitation in the Sahel is a significant driver of changes in abundance at the large-scale population level.

Keywords

Migrant Palaearctic Precipitation Population NDVI Wintering grounds 

Zusammenfassung

Niederschlag im Überwinterungsgebiet beeinflusst Populationsveränderungen vieler afro-paläarktischer Zugvogelarten

Es ist gezeigt worden, dass Überlebens- und Populationswachstumsraten mehrerer afro-paläarktischer Zugvogelarten mit Niederschlags- oder Vegetationslevel in ihren afrikanischen Überwinterungsgebieten zusammenhängen, was darauf hindeutet, dass saisonale Nahrungsressourcen das Populationswachstum begrenzen können. Hier untersuchen wir die Allgemeingültigkeit dieser Beziehung für 16 in England brütende Zugvogelarten, indem wir den Anteil der Variabilität von jährlichen Populationsveränderungen untersuchen, der mit Hilfe von Umweltvariablen in Überwinterungs- und Rastgebieten über Zeiträume von 25 und 40 Jahren erklärt wird. Der Niederschlag in der ariden Sahelregion in Westafrika zeigte die stärksten und beständigsten Effekte auf Zugvogelpopulationen – bei 6 von 9 Arten, die in dieser Region überwintern, sowie bei 3 von 7 Arten, welche die Region auf dem Durchzug nutzen, aber weiter südlich überwintern, hatte er einen positiven Einfluss auf die Populationswachstumsrate über 40 Jahre. Die Effekte von Niederschlägen in anderen afrikanischen Regionen sowie die Effekte von Maßen der Vegetationsqualität, die von Satellitendaten abgeleitet worden waren, in allen anderen Regionen waren schwächer und wirkten nicht in eine bestimmte Richtung. Für den Zeitraum von 25 Jahren, für den Daten sowohl zum Regenfall als auch zur Vegetation vorliegen, zeigten sich bei 12 der 16 untersuchten Arten signifikante Wettereffekte, und die mittlere Abweichung, die bei diesen zwölf Arten mit Umweltvariablen erklärt werden konnte, betrug 32 %. Sie stieg auf 41 %, wenn Dichteabhängigkeit in den Modellen berücksichtigt wurde. Für den Zeitraum von 40 Jahren hatte der Niederschlag bei 11 Arten signifikante Effekte und erklärte eine mittlere Abweichung von 14 % (23 % einschließlich Dichteabhängigkeit). Wir zeigen, dass bei vielen Arten von Langstreckenziehern der Niederschlag in der Sahelzone einen signifikanten Einfluss auf Veränderungen der Abundanz auf großräumigem Populationsniveau hat.

Supplementary material

10336_2014_1073_MOESM1_ESM.pdf (434 kb)
Supplementary material 1 (PDF 433 kb)
10336_2014_1073_MOESM2_ESM.pdf (185 kb)
Supplementary material 2 (PDF 184 kb)
10336_2014_1073_MOESM3_ESM.pdf (81 kb)
Supplementary material 3 (PDF 81 kb)
10336_2014_1073_MOESM4_ESM.pdf (146 kb)
Supplementary material 4 (PDF 145 kb)
10336_2014_1073_MOESM5_ESM.pdf (126 kb)
Supplementary material 5 (PDF 125 kb)
10336_2014_1073_MOESM6_ESM.pdf (126 kb)
Supplementary material 6 (PDF 125 kb)

References

  1. Bächler E, Hahn S, Schaub M et al (2010) Year-round tracking of small trans-saharan migrants using light-level geolocators. PLoS ONE 5:e9566. doi:10.1371/journal.pone.0009566 PubMedCrossRefPubMedCentralGoogle Scholar
  2. Baillie SR, Peach WJ (1992) Population limitation in Palaearctic-African migrant passerines. Ibis 134:120–132. doi:10.1111/j.1474-919X.1992.tb04742.x CrossRefGoogle Scholar
  3. Baillie S, Marchant J, Leech DI et al (2013) Bird Trends 2012: trends in numbers, breeding success and survival for UK breeding birds. BTO, Thetford. Available at: http://www.bto.org/birdtrends
  4. Balbontín J, Møller AP, Hermosell IG et al (2009) Individual responses in spring arrival date to ecological conditions during winter and migration in a migratory bird. J Anim Ecol 78:981–989. doi:10.1111/j.1365-2656.2009.01573.x PubMedCrossRefGoogle Scholar
  5. Berthold P, Fiedler W, Schlenker R, Querner U (1998) 25-year study of the population development of central European songbirds: a general decline, most evident in long-distance migrants. Naturwissenschaften 85:350–353. doi:10.1007/s001140050514 CrossRefGoogle Scholar
  6. Brown LH, Urban EK, Newman K (1982) The birds of Africa, vol I. Academic Press, LondonGoogle Scholar
  7. Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58. doi:10.1038/nclimate1633 CrossRefGoogle Scholar
  8. Dai A, Lamb PJ, Trenberth KE, Hulme M, Jones PD, Xie P (2004) The recent Sahel drought is real. Int J Clim 24:1323–1331CrossRefGoogle Scholar
  9. Den Held JJ (1981) Population changes of the Purple Heron in relation to drought in the wintering area. Ardea 69:185–191Google Scholar
  10. Fiedler W (2009) New technologies for monitoring bird migration and behaviour. Ringing Migr 24:175–179. doi:10.1080/03078698.2009.9674389 CrossRefGoogle Scholar
  11. Freeman SN, Noble DG, Newson SE, Baillie SR (2007) Modelling population changes using data from different surveys: the Common Birds Census and the Breeding Bird Survey. Bird Study 54:61–72. doi:10.1080/00063650709461457 CrossRefGoogle Scholar
  12. Giannini A, Saravanan R, Chang P (2003) Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302:1027–1030. doi:10.1126/science.1089357 PubMedCrossRefGoogle Scholar
  13. Gilroy JJ, Anderson GQA, Grice PV et al (2008) Could soil degradation contribute to farmland bird declines? Links between soil penetrability and the abundance of yellow wagtails Motacilla flava in arable fields. Biol Conserv 141:3116–3126. doi:10.1016/j.biocon.2008.09.019 CrossRefGoogle Scholar
  14. Gordo O, Brotons L, Ferrer X, Comas P (2005) Do changes in climate patterns in wintering areas affect the timing of the spring arrival of trans-Saharan migrant birds? Glob Change Biol 11:12–21. doi:10.1111/j.1365-2486.2004.00875.x CrossRefGoogle Scholar
  15. Haarsma RJ, Selten FM, Weber SL, Kliphuis M (2005) Sahel rainfall variability and response to greenhouse warming. Geophys Res Lett 32. doi: 10.1029/2005GL023232
  16. Hewson CM, Noble DG (2009) Population trends of breeding birds in British woodlands over a 32-year period: relationships with food, habitat use and migratory behaviour. Ibis 151:464–486. doi:10.1111/j.1474-919X.2009.00937.x CrossRefGoogle Scholar
  17. Holmes RT (2007) Understanding population change in migratory songbirds: long-term and experimental studies of Neotropical migrants in breeding and wintering areas. Ibis 149:2–13. doi:10.1111/j.1474-919X.2007.00685.x CrossRefGoogle Scholar
  18. Jones PJ (1995) Migration strategies of Palaearctic passerines in Africa. Isr J Zool 41:393–406Google Scholar
  19. Keith S, Urban EK, Fry CH (1992) The birds of Africa, vol 4. Academic Press, LondonGoogle Scholar
  20. Nevoux M, Barbraud J-C, Barbraud C (2008) Nonlinear impact of climate on survival in a migratory white stork population. J Anim Ecol 77:1143–1152. doi:10.1111/j.1365-2656.2008.01435.x PubMedCrossRefGoogle Scholar
  21. Newton I (2004) Population limitation in migrants. Ibis 146:197–226. doi:10.1111/j.1474-919X.2004.00293.x CrossRefGoogle Scholar
  22. Newton I (2006) Can conditions experienced during migration limit the population levels of birds? J Ornithol 147:146–166. doi:10.1007/s10336-006-0058-4 CrossRefGoogle Scholar
  23. Nicholson SE, Palao IM (1993) A re-evaluation of rainfall variability in the Sahel. Part I. Characteristics of rainfall fluctuations. Int J Clim 13:371–389. doi:10.1002/joc.3370130403 CrossRefGoogle Scholar
  24. Nicholson SE, Some B, Kone B (2000) An analysis of recent rainfall conditions in West Africa, Including the rainy seasons of the 1997 El Niño and the 1998 La Niña Years. J Clim 13:2628–2640. doi:10.1175/1520-0442(2000)013<2628:AAORRC>2.0.CO;2 CrossRefGoogle Scholar
  25. Norman D, Peach WJ (2013) Density-dependent survival and recruitment in a long-distance Palaearctic migrant, the Sand Martin Riparia riparia. Ibis 155:284–296. doi:10.1111/ibi.12036 CrossRefGoogle Scholar
  26. Ockendon N, Hewson CM, Johnston A, Atkinson PW (2012) Declines in British-breeding populations of Afro-Palaearctic migrant birds are linked to bioclimatic wintering zone in Africa, possibly via constraints on arrival time advancement. Bird Study 59:111–125. doi:10.1080/00063657.2011.645798 CrossRefGoogle Scholar
  27. Peach W, Baillie S, Underhill L (1991) Survival of British Sedge Warblers Acrocephalus schoenobaenus in relation to west African rainfall. Ibis 133:300–305. doi:10.1111/j.1474-919X.1991.tb04573.x CrossRefGoogle Scholar
  28. Pettorelli N, Ryan S, Mueller T et al (2011) The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. Clim Res 46:15–27. doi:10.3354/cr00936 CrossRefGoogle Scholar
  29. Robinson RA, Balmer DE, Marchant JH (2008) Survival rates of hirundines in relation to British and African rainfall. Ringing Migr 24:1–6. doi:10.1080/03078698.2008.9674375 CrossRefGoogle Scholar
  30. Robson D, Barriocanal C (2011) Ecological conditions in wintering and passage areas as determinants of timing of spring migration in trans-Saharan migratory birds. J Anim Ecol 80:320–331. doi:10.1111/j.1365-2656.2010.01772.x PubMedCrossRefGoogle Scholar
  31. Saino N, Szép T, Romano M et al (2004a) Ecological conditions during winter predict arrival date at the breeding quarters in a trans-Saharan migratory bird. Ecol Lett 7:21–25. doi:10.1046/j.1461-0248.2003.00553.x CrossRefGoogle Scholar
  32. Saino N, Szép T, Romano M et al (2004b) Ecological conditions during winter predict arrival date at the breeding quarters in a trans-Saharan migratory bird. Ecol Lett 7:21–25. doi:10.1046/j.1461-0248.2003.00553.x CrossRefGoogle Scholar
  33. Salewski V, Bairlein F, Leisler B (2003) Niche partitioning of two Palearctic passerine migrants with Afrotropical residents in their West African winter quarters. Behav Ecol 14:493–502. doi:10.1093/beheco/arg021 CrossRefGoogle Scholar
  34. Salewski V, Hochachka WM, Fiedler W (2013) Multiple weather factors affect apparent survival of European passerine birds. PLoS ONE 8:e59110. doi:10.1371/journal.pone.0059110 PubMedCrossRefPubMedCentralGoogle Scholar
  35. Sanderson FJ, Donald PF, Pain DJ et al (2006) Long-term population declines in Afro-Palearctic migrant birds. Biol Conserv 131:93–105. doi:10.1016/j.biocon.2006.02.008 CrossRefGoogle Scholar
  36. Schaub M, Kania W, Köppen U (2005) Variation of primary production during winter induces synchrony in survival rates in migratory white storks Ciconia ciconia. J Anim Ecol 74:656–666. doi:10.1111/j.1365-2656.2005.00961.x CrossRefGoogle Scholar
  37. Schaub M, Jakober H, Stauber W (2011) Demographic response to environmental variation in breeding, stopover and non-breeding areas in a migratory passerine. Oecologia 167:445–459. doi:10.1007/s00442-011-1999-8 PubMedCrossRefGoogle Scholar
  38. Stenseth NC, Chan K-S, Tavecchia G et al (2004) Modelling non-additive and nonlinear signals from climatic noise in ecological time series: Soay sheep as an example. Proc R Soc Lond B Biol Sci 271:1985–1993. doi:10.1098/rspb.2004.2794 CrossRefGoogle Scholar
  39. Stoate C, Moreby JS (1995) Premigratory diet of trans-Saharan migrant passerines in the western Sahel. Bird Study 42:101–106. doi:10.1080/00063659509477156 CrossRefGoogle Scholar
  40. Szép T (1995) Relationship between west African rainfall and the survival of central European Sand Martins Riparia riparia. Ibis 137:162–168. doi:10.1111/j.1474-919X.1995.tb03235.x CrossRefGoogle Scholar
  41. Szép T, Møller AP, Piper S et al (2006) Searching for potential wintering and migration areas of a Danish Barn Swallow population in South Africa by correlating NDVI with survival estimates. J Ornithol 147:245–253. doi:10.1007/s10336-006-0060-x CrossRefGoogle Scholar
  42. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  43. Thaxter CB, Redfern CPF, Bevan RM (2006) Survival rates of adult Reed Warblers Acrocephalus scirpaceus at a northern and southern site in England. Ringing Migr 23:65–79. doi:10.1080/03078698.2006.9674347 CrossRefGoogle Scholar
  44. Thaxter CB, Joys AC, Gregory RD et al (2010) Hypotheses to explain patterns of population change among breeding bird species in England. Biol Conserv 143:2006–2019. doi:10.1016/j.biocon.2010.05.004 CrossRefGoogle Scholar
  45. Todd MC, Washington R, Cheke RA, Kniveton D (2002) Brown locust outbreaks and climate variability in southern Africa. J Appl Ecol 39:31–42. doi:10.1046/j.1365-2664.2002.00691.x CrossRefGoogle Scholar
  46. Tucker CJ, Pinzon JE, Brown ME et al (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26:4485–4498. doi:10.1080/01431160500168686 CrossRefGoogle Scholar
  47. University of East Anglia Climatic Research Unit (CRU) (2008) CRU Time Series (TS) high resolution gridded datasets. Available at: http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_1256223773328276
  48. Urban EK, Fry CH, Keith S (1986) The birds of Africa, vol 2. Academic Press, LondonGoogle Scholar
  49. Urban EK, Fry CH, Keith S (1997) The birds of Africa, vol 5. Academic Press, LondonGoogle Scholar
  50. Wernham C, Toms M, Marchant J et al (2002) The migration atlas: movements of the birds of Britain and Ireland. A&C Black, LondonGoogle Scholar
  51. Winstanley D, Spencer R, Williamson K (1974) Where have all the Whitethroats gone? Bird Study 21:1–14Google Scholar
  52. Wood SN (2004) Stable and efficient multiple smoothing parameter estimate for generalized additive models. J Am Stat Assoc 99:673–686CrossRefGoogle Scholar
  53. Wood SN (2006) Generalized additive models: an introduction. Chapman & Hall/CRC, LondonGoogle Scholar
  54. Zwarts L, Bijlsma RG, van der Kamp J, Wymenga E (2009) Carry-over effects of Sahel drought on reproduction. Living on the edge: wetlands and birds in a changing sahel. KNNV Publishing, Zeist, pp 472–479Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2014

Authors and Affiliations

  • Nancy Ockendon
    • 1
  • Alison Johnston
    • 1
  • Stephen R. Baillie
    • 1
  1. 1.British Trust for OrnithologyNorfolkUK

Personalised recommendations