Journal of Ornithology

, Volume 155, Issue 4, pp 869–875 | Cite as

Do Cory’s Shearwaters Calonectris borealis choose mates based on size?

  • Cristina Perry Nava
  • Sin-Yeon Kim
  • Maria Carvalho Magalhães
  • Verónica Neves
Original Article

Abstract

Many bird species rely on visual cues for mate choice, including those provided by body size or by the size of a body appendage. Mate choice based on size may lead to size-assortative mating, which may in turn have consequences for reproductive performance. In this study, we examined whether body size influences mate choice decisions of Cory’s Shearwater Calonectris borealis, a seabird with nocturnal activity on land. We found evidence of negative assortative mating for bill morphology (nostril height and bill length), but found no assortative mating according to body mass, tarsus length, and wing length. In addition, we investigated the influence of negative assortative mating and individual body size-related traits on reproductive performance, i.e., laying date and breeding success. We found that laying date and breeding success were not correlated with the extent of assortative mating, i.e., the assortatively mating breeders did not lay earlier and were not more likely to breed successfully. However, we found that heavier females (body mass measured during pre-laying) laid later in the season. We discuss these results in the light of possible effects of acoustic signals and foraging strategies on the mating pattern. Furthermore, we suggest that some female attributes may be crucial for breeding success in Cory’s Shearwaters.

Keywords

Mate choice Assortative mating Body size Reproductive performance Calonectris borealis Azores archipelago 

Zusammenfassung

Wählen Gelbschnabel-SturmtaucherCalonectris borealisihre Partner nach der Größe?

Die Partnerwahl vieler Vogelarten beruht auf visuellen Signalen. Zu solchen Signalen gehören auch die Körpergröße oder die Größe von Körperanhängen. Größenbasierte Partnerwahl kann dazu führen, dass Partner passender Körpergröße gewählt werden, was wiederum Konsequenzen für die Reproduktionsleistung haben kann. In dieser Studie untersuchten wir, ob bei Gelbschnabel-Sturmtauchern Calonectris borealis, ein Seevogel mit nächtlicher Aktivität an Land, die Körpergröße die Entscheidung für einen Partner beeinflusst. Wir fanden Belege, dass die Schnabelmorphologie (Nasenlochhöhe und Schnabellänge) nicht entscheidend ist für die Partnerwahl. Außerdem fanden wir keine Wahl des Partners nach Körpermasse, Tarsus- und Flügellänge. Darüber hinaus untersuchten wir den Einfluss von gerichteter Partnerwahl und individuellen Körpergrößen-bezogenen Eigenschaften auf die Reproduktionsleistung, d.h. Legedatum und Bruterfolg. Legedatum und Bruterfolg waren nicht korreliert mit dem Ausmaß der Bildung von zueinander passenden Paaren. Das heißt, dass Brutvögel, die am besten zusammenpassen, nicht früher legen und wahrscheinlich auch nicht erfolgreicher brüten. Dennoch konnten wir feststellen, dass schwerere Weibchen (Gewicht gemessen vor der Legephase) später in der Saison legten. Wir diskutieren diese Ergebnisse vor dem Hintergrund möglicher Effekte von akustischen Signalen und Nahrungsstrategien auf das Muster der Partnerwahl. Außerdem deuten wir, dass einige Merkmale von Weibchen für den Bruterfolg von Gelbschnabel-Sturmtauchern ausschlaggebend sein können.

References

  1. Andersson M (1994) Sexual selection. Princeton University Press, PrincetonGoogle Scholar
  2. Barbraud C, Jouventin P (1998) What causes body size variation in the Snow Petrel Pagodroma nivea? J Avian Biol 29:161–171Google Scholar
  3. Bonadonna F, Nevitt GA (2004) Partner-specific odor recognition in an Antarctic seabird. Science 306:835PubMedCrossRefGoogle Scholar
  4. Bretagnolle V (1996) Acoustic communication in a group of nonpasserine birds, the petrels. In: Kroodsma DE, Miller EH (eds) Ecology and evolution of acoustic communication in birds. Cornell University Press, Ithaca, pp 160–177Google Scholar
  5. Bretagnolle V, Lequette B (1990) Structural variation in the call of the Cory’s shearwater (Calonectris diomedea, Aves, Procellariidae). Ethology 85:313–323CrossRefGoogle Scholar
  6. Bried J, Jouventin P (2002) Site and mate choice in seabirds: an evolutionary approach. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC, Boca Raton, pp 263–305Google Scholar
  7. Bried J, Dubois M-P, Jarne P, Jouventin P, Santos RS (2010) Does competition for nests affect genetic monogamy in Cory’s shearwater Calonectris diomedea? J Avian Biol 41:407–418CrossRefGoogle Scholar
  8. Brooke M (2004) Albatrosses and petrels across the world. Bird Families of the World series. Oxford University Press, OxfordGoogle Scholar
  9. Burley N (1983) The meaning of assortative mating. Ethol Sociobiol 4:191–203CrossRefGoogle Scholar
  10. Carey MJ (2011) Sexual size dimorphism, within-pair comparisons and assortative mating in the short-tailed shearwater (Puffinus tenuirostris). Notornis 58:8–16Google Scholar
  11. Chardine JW, Morris RD (1989) Sexual size dimorphism and assortative mating in the brown noddy. Condor 91:868–874CrossRefGoogle Scholar
  12. Cleveland KE (2008) Estimating hatching date and mate choice of Leach’s Storm-petrels (Oceanodroma leucorhoa). Dissertation. Acadia University, WolfvilleGoogle Scholar
  13. Coulter MC (1986) Assortative mating and sexual dimorphism in the common tern. Wilson Bull 98:93–100Google Scholar
  14. Crawley MJ (2007) The R book. Wiley, ChichesterCrossRefGoogle Scholar
  15. Crespi BJ (1989) Causes of assortative mating in arthropods. Anim Behav 38:980–1000CrossRefGoogle Scholar
  16. Curé C, Aubin T, Mathevon N (2009) Acoustic convergence and divergence in two sympatric burrowing nocturnal seabirds. Biol J Linn Soc 96:115–134CrossRefGoogle Scholar
  17. Daunt F, Monaghan P, Wanless S, Harris MP (2003) Sexual ornament size and breeding performance in female and male European shags Phalacrocorax aristotelis. Ibis 145:54–60CrossRefGoogle Scholar
  18. Delestrade A (2001) Sexual size cimorphism and positive assortative mating in Alpine Choughs (Pyrrhocorax graculus). Auk 118:553–556CrossRefGoogle Scholar
  19. Einoder LD, Page B, Goldsworthy SD (2008) Sexual size dimorphism and assortative mating in the short-tailed shearwater Puffinus tenuirostris. Mar Ornithol 36:167–173Google Scholar
  20. Ferrer M, Penteriani V (2003) A process of pair formation leading to assortative mating: passive age-assortative mating by habitat heterogeneity. Anim Behav 66:137–143CrossRefGoogle Scholar
  21. Forero MG, Tella JL, Donázar J, Blanco G, Bertellotti M, Ceballos O (2001) Phenotypic assortative mating and within-pair sexual dimorphism and its influence on breeding success and offspring quality in Magellanic penguins. Can J Zool 79:1414–1422CrossRefGoogle Scholar
  22. Genevois F, Bretagnolle V (1994) Male blue petrels reveal their body mass when calling. Ethol Ecol Evol 6:377–383CrossRefGoogle Scholar
  23. González-Solís J, Croxall JP, Wood AG (2000) Sexual dimorphism and sexual segregation in foraging strategies of northern giant petrels, Macronectes halli, during incubation. Oikos 90:390–398CrossRefGoogle Scholar
  24. Granadeiro J (1993) Variation in measurements of Cory’s shearwater between populations and sexing by discriminant analysis. Ringing Migr 14:103–112CrossRefGoogle Scholar
  25. Helfenstein F, Danchin E, Wagner RH (2004) Assortative mating and sexual size dimorphism in black-legged kittiwakes. Waterbirds 27:350–354CrossRefGoogle Scholar
  26. Jehl JR Jr (1970) Sexual selection for size differences in two species of sandpipers. Evolution 24:311–319CrossRefGoogle Scholar
  27. Johnstone RA, Reynolds JD, Deutsch JC (1996) Mutual mate choice and sex differences in choosiness. Evolution 50:1382–1391CrossRefGoogle Scholar
  28. Jones I, Hunter F (1999) Experimental evidence for mutual inter- and intrasexual selection favouring a crested auklet ornament. Anim Behav 57:521–528PubMedCrossRefGoogle Scholar
  29. Jönsson PE (1987) Sexual size dimorphism and disassortative mating in the dunlin Calidris alpina schinzii in Southern Sweden. Ornis Scand 18:257–264CrossRefGoogle Scholar
  30. Liordos V, Goutner V (2009) Sexual differences in the diet of great cormorants Phalacrocorax carbo sinensis wintering in Greece. Eur J Wildl Res 55:301–308CrossRefGoogle Scholar
  31. MacInnes CD, Davis RA, Jones RN, Lieff BC, Pakulak AJ (1974) Reproductive efficiency of McConnell River small Canada geese. J Wildl Manage 38:686–707CrossRefGoogle Scholar
  32. Magalhães MC, Santos RS, Hamer KC (2008) Dual-foraging of Cory’s Shearwaters in the Azores: feeding locations, behaviour at sea and implications for food provisioning of chicks. Mar Ecol Prog Ser 359:283–293CrossRefGoogle Scholar
  33. Michel P, Ollason JC, Grosbois V, Thompson PM (2003) The influence of body size, breeding experience and environmental variability on egg size in the northern fulmar (Fulmarus glacialis). J Zool 261:427–432CrossRefGoogle Scholar
  34. Mínguez E, Belliure J, Ferrer M (2001) Bill size in relation to position in the colony in the chinstrap penguin. Waterbirds 24:34–38CrossRefGoogle Scholar
  35. Monteiro LR, Ramos JA, Furness RW, Nevo AJ (1996) Movements, morphology, breeding, molt, diet and feeding of seabirds in the Azores. Colon Waterbirds 19:82–97CrossRefGoogle Scholar
  36. Moreno J (1989) Strategies of mass change in breeding birds. Biol J Linn Soc 37:297–310CrossRefGoogle Scholar
  37. Mougin J-L (2000) Pairing in the Cory’s shearwater (Calonectris diomedea) of Selvagem Grande. J Ornithol 141:319–326CrossRefGoogle Scholar
  38. Mougin J-L, Jouanin C, Roux F (1988a) Les différences d’âge et d’expérience entre partenaires chez le puffin cendré Calonectris diomedea borealis de l’île Selvagem Grande (30°09′N, 15°52′W). L’Oiseau et RFO 58:113–119Google Scholar
  39. Mougin J-L, Jouanin C, Roux F (1988b) L’influence des voisins dans la nidification du puffin cendré Calonectris diomedea. C R Acad Sci III 307:195–198Google Scholar
  40. Navarro J, González-Solís J, Viscor G (2007) Nutritional and feeding ecology in Cory’s shearwater Calonectris diomedea during breeding. Mar Ecol Prog Ser 351:261–271CrossRefGoogle Scholar
  41. Navarro J, Kaliontzopoulou A, González-Solís J (2009) Sexual dimorphism in bill morphology and feeding ecology in Cory’s shearwater (Calonectris diomedea). Zoology (Jena) 112:128–138CrossRefGoogle Scholar
  42. Olsen P, Barry S, Baker GB, Mooney N, Cam G, Cam A (1998) Assortative mating in falcons: do big females pair with big males? J Avian Biol 29:197–200CrossRefGoogle Scholar
  43. Palestis BG, Nisbet ICT, Hatch JJ, Arnold JM, Szczys P (2012) Tail length and sexual selection in a monogamous, monomorphic species, the roseate tern Sterna dougallii. J Ornithol 153:1153–1163CrossRefGoogle Scholar
  44. Peck DR (2006) Local adaptation in the wedge-tailed shearwater (Puffinus pacificus). Dissertation. James Cook University, TownsvilleGoogle Scholar
  45. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org/
  46. Ramos JA, Monteiro LR, Sola E, Moniz Z (1997) Characteristics and competition for nest cavities in burrowing procellariiformes. Condor 99:634–641CrossRefGoogle Scholar
  47. Regosin JV, Pruett-Jones S (2001) Sexual selection and tail-length dimorphism in scissor-tailed flycatchers. Auk 118:167–175CrossRefGoogle Scholar
  48. Thibault J-C, Bretagnolle V, Rabouam C (1997) Calonectris diomedea Cory’s shearwater. Birds West Palearct Update 1:75–98Google Scholar
  49. Tryjanowski P, Šimek J (2005) Sexual size dimorphism and positive assortative mating in red-backed shrike Lanius collurio: an adaptive value? J Ethol 23:161–165CrossRefGoogle Scholar
  50. Velando A, Lessells CM, Márquez JC (2001) The function of female and male ornaments in the Inca Tern: evidence for links between ornament expression and both adult condition and reproductive performance. J Avian Biol 4:311–318CrossRefGoogle Scholar
  51. Warham J (1996) The behaviour, population biology and physiology of the petrels. Academic, LondonGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2014

Authors and Affiliations

  • Cristina Perry Nava
    • 1
  • Sin-Yeon Kim
    • 2
  • Maria Carvalho Magalhães
    • 1
  • Verónica Neves
    • 1
  1. 1.Departamento de Oceanografia e PescasCentro do IMAR da Universidade dos AçoresHorta, Faial, AzoresPortugal
  2. 2.Departamento de Ecoloxía e Bioloxía Animal, Facultade de CienciasUniversidade de VigoVigoSpain

Personalised recommendations