Journal of Ornithology

, Volume 155, Issue 3, pp 571–579 | Cite as

Interpreting seasonal range shifts in migratory birds: a critical assessment of ‘short-stopping’ and a suggested terminology

  • Johan Elmberg
  • Rebecca Hessel
  • Anthony David Fox
  • Lars Dalby
Review

Abstract

The term ‘short-stopping’ is increasingly used in ecology to describe spatio-temporal changes in occurrence of migratory species. Spurred by the insight that it has been used in a variety of contexts, we reviewed its use in avian ecology. A literature search yielded 59 papers explicitly treating short-stopping in birds, most of them in peer-reviewed journals. The term was first used in 1967 to describe a northward shift in wintering Canada Geese in North America and has been used with increasing frequency to the present day. Geese dominate the short-stopping literature, which is confined to the northern hemisphere. Short-stopping has been used to describe (1) a shortened autumn migration that results in a wintering distribution closer to breeding areas, (2) a shortened spring migration that results in a breeding distribution closer to wintering areas, and (3) a delay in autumn migration that leads to a perceived reduced abundance in some part of the winter range. We advocate that short-stopping should be used only to describe (1) range shifts that involve shortening of the migratory corridor, and that they are qualified explicitly by season (i.e. breeding/winter) and degree (i.e. full or partial range shift). In other cases of breeding, wintering or entire range shifts where the migratory corridor is elongated or remains the same, we recommend using the term ‘range shift’, qualified by season, geography and orientation (i.e. the direction of the range shift). We also discuss the need for spatially explicit avian count monitoring mechanisms (rather than capture–recapture or hunting bag data) designed specifically to track such changes in distribution in the future.

Keywords

Breeding range Climate change Distribution Migration Range shift Wintering range 

Zusammenfassung

Die Deutung jahreszeitlicher Gebietsverschiebungen bei Zugvögeln: eine kritische Beurteilung des Begriffs “short-stopping”und Vorschläge zur Terminologie

Der Begriff “short-stopping”wird in der Ökologie zunehmend zur Beschreibung räumlich-zeitlicher Änderungen im Vorkommen ziehender Arten gebraucht. Motiviert von der Erkenntnis, dass diese Bezeichnung in den verschiedensten Zusammenhängen verwendet wird, untersuchten wir deren Gebrauch auf dem Gebiet der Ökologie der Vögel. Eine Literaturrecherche erbrachte 59 Publikationen, die sich explizit mit Zugwegverkürzungen bei Vögeln beschäftigen, die meisten davon in Zeitschriften, die einem Gutachterverfahren unterlagen. Der Begriff wurde zuerst 1967 verwendet, um eine nordwärtige Verschiebung bei überwinternden Kanadagänsen in Nordamerika zu beschreiben und ist mit zunehmender Häufigkeit bis heute in Gebrauch. Gänse dominieren die Literatur zum Thema Zugwegverkürzung, welche zudem auf die Nordhemisphäre beschränkt ist. Mit „short-stopping“wurden beschrieben: (a) ein verkürzter Herbstzug, welcher zu einer näher an den Brutgebieten liegenden Winterverbreitung führt; (b) ein verkürzter Frühjahrszug, der bewirkt, dass die Verbreitung zur Brutzeit näher an die Überwinterungsgebiete rückt; und (c) ein verzögerter Herbstzug, der in einer beobachteten verringerten Häufigkeit in Teilen des Überwinterungsgebietes resultiert. Wir empfehlen, die Bezeichnung „short-stopping”nur auf Gebietsverschiebungen anzuwenden, die durch eine Verkürzung des Zugkorridors zustande kommen und die ausdrücklich durch die Jahreszeit (d. h. Brutzeit/Winter) und ihr Ausmaß (d. h. vollständige oder teilweise Gebietsverschiebung) gekennzeichnet sind. In anderen Fällen der Verschiebung von Brut-, Überwinterungs- oder Gesamtverbreitungsgebieten, bei denen der Zugkorridor länger wird oder sich nicht ändert, empfehlen wir die Verwendung des Begriffs Gebietsverschiebung (“range shift”), mit einer zusätzlichen jahreszeitlichen, geografischen oder richtungsbezeichnenden Angabe (d. h. die Richtung der Gebietsverschiebung). Außerdem diskutieren wir den Bedarf an speziell entwickelten, räumlich genauen Monitoring-Techniken für Vogelbestände (anstelle von Fang-Wiederfang-Daten oder Jagdstatistiken), um solche Veränderungen zukünftig nachvollziehen zu können.

References

  1. Alerstam T, Enckell PH (1979) Unpredictable habitats and evolution of bird migration. Oikos 33:228–232CrossRefGoogle Scholar
  2. Alerstam T, Hedenström A, Åkesson S (2003) Long-distance migration: evolution and determinants. Oikos 103:247–260CrossRefGoogle Scholar
  3. Berthold P (2001) Bird migration. A general survey. Oxford University Press, OxfordGoogle Scholar
  4. Bildstein KL, Peterjohn BG (2012) The future of banding in raptor science. J Raptor Res 46:3–11CrossRefGoogle Scholar
  5. Both C, van Asch M, Bijlsma RG, van den Burg AB, Visser ME (2009) Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J Anim Ecol 78:73–83PubMedCrossRefGoogle Scholar
  6. Bruner P (1994) Influences on the past and present distribution patterns of Pacific Golden-plover (Pluvialis fulva). Proceedings of the Seminaire Manu. Connaissance et protection des oiseaux, Punaauia, Tahiti, pp. 78–82Google Scholar
  7. Calvert AM, Gauthier G, Reed A (2005) Spatiotemporal heterogeneity of greater snow goose harvest and implications for hunting regulations. J Wildl Manag 69:561–573CrossRefGoogle Scholar
  8. Chandler RB, Strong AM, Kaufman CC (2004) Elevated lead levels in urban House Sparrows: a threat to Sharp-shinned Hawks and Merlins? J Raptor Res 38:62–68Google Scholar
  9. Cox GW (1985) The evolution of avian migration systems between temperate and tropical regions of the new world. Am Nat 126:451–474CrossRefGoogle Scholar
  10. Crider ED (1967) Canada goose interceptions in the southeastern United States, with special reference to the Florida flock. Proc Ann Conf Southeast Assoc Game Fish Comm 21:145–155Google Scholar
  11. Doswald N, Willis SG, Collingham YC, Pain DJ, Green RE, Huntley B (2009) Potential impacts of climatic change on the breeding and non-breeding ranges and migration distance of European Sylvia warblers. J Biogeogr 36:1194–1208CrossRefGoogle Scholar
  12. Drever MC, Clark RG (2007) Spring temperature, clutch initiation date and duck nest success: a test of the mismatch hypothesis. J Anim Ecol 76:139–148PubMedCrossRefGoogle Scholar
  13. Duncan CD (1996) Changes in the winter abundance of Sharp-shinned Hawks in New England. J Field Ornithol 67:254–262Google Scholar
  14. Elmberg J, Nummi P, Pöysä H, Sjöberg K, Gunnarsson G, Clausen P, Guillemain M, Rodrigues D, Väänänen VM (2006) The scientific basis for new and sustainable management of migratory European ducks. Wildl Biol 12:121–127CrossRefGoogle Scholar
  15. Fiedler W, Bairlein F, Koppen U (2004) Using large-scale data from ringed birds for the investigation of effects of climate change on migrating birds: pitfalls and prospects. Adv Ecol Res 35:49–67CrossRefGoogle Scholar
  16. Fox AD, Ebbinge BS, Mitchell C, Heinicke T, Aarvak T, Colhoun K, Clausen P, Dereliev S, Faragó S, Koffijberg K, Kruckenberg H, Loonen M, Madsen J, Mooij J, Musil P, Nilsson L, Pihl S, van der Jeugd H (2010) Current estimates of goose population sizes in the western Palearctic, a gap analysis and an assessment of trends. Ornis Svec 20:115–127Google Scholar
  17. Gourlay-Larour ML, Pradel R, Guillemain M, Santin-Janin H, L’Hostis M, Caizergues A (2013) Individual turnover in common pochards wintering in western France. J Wildl Manag 77:477–485CrossRefGoogle Scholar
  18. Gunnarsson G, Latorre-Margalef N, Hobson KA, Van Wilgenburg SL, Elmberg J, Olsen B, Fouchier RAM, Waldenström J (2012a) Disease dynamics and bird migration-linking mallards Anas platyrhynchos and subtype diversity of the Influenza A virus in time and space. PLoS ONE 7:e35679PubMedCentralPubMedCrossRefGoogle Scholar
  19. Gunnarsson G, Waldenström J, Fransson T (2012b) Direct and indirect effects of winter harshness on the survival of mallards Anas platyrhynchos in northwest Europe. Ibis 154:307–317CrossRefGoogle Scholar
  20. Hankla DJ, Rudolph R (1967) Changes in the migration and wintering habits of Canada Geese in the lower portion of the Atlantic and Mississippi Flyways—with special reference to national wildlife refuges. Proc Ann Conf Southeast Assoc Game Fish Comm 21:133–144Google Scholar
  21. Harvey WF IV, Malecki RA, Soutiere EC (1988) Habitat use by foraging Canada Geese in Kent County Maryland USA. Trans Northeast Sect Wildl Soc 45:1–7Google Scholar
  22. Hearn RD (2004) Greater white-fronted goose Anser albifrons albifrons (Baltic-North Sea population) in Britain 1960/1961–1999/2000. Waterbird Review Series, The Wildfowl and Wetlands Trust/Joint Nature Conservation Committee, SlimbridgeGoogle Scholar
  23. Hitch AT, Leberg PL (2007) Breeding distributions of North American bird species moving north as a result of climate change. Conserv Biol 21:534–539PubMedCrossRefGoogle Scholar
  24. Humburg DD, Graber DA, Babock KM (1985) Factors affecting autumn and winter distribution of Canada Geese. Trans North Am Wildl Nat Resour Conf 50:525–539Google Scholar
  25. Huntley B, Green RE, Collingham YC, Willis SG (2007) A climatic atlas of European breeding birds. Lynx, BarcelonaGoogle Scholar
  26. Kirby RE, Riechmann JH, Shough ME (1976) A preliminary report on Minnesota’s innovative 1973 waterfowl season. Wildl Soc Bull 4:55–63Google Scholar
  27. Kujala H, Vepsäläinen V, Zuckerberg B, Brommer JE (2013) Range margin shifts of birds revisited—the role of spatiotemporally varying survey effort. Glob Change Biol 19:420–430CrossRefGoogle Scholar
  28. La Sorte FA, Jetz W (2010) Avian distributions under climate change: towards improved projections. J Exp Biol 213:862–869PubMedCrossRefGoogle Scholar
  29. La Sorte FA, Jetz W (2012) Tracking of climatic niche boundaries under recent climate change. J Anim Ecol 81:914–925PubMedCrossRefGoogle Scholar
  30. Lehikoinen A, Jaatinen K (2012) Delayed autumn migration in northern European waterfowl. J Ornithol 153:563–570CrossRefGoogle Scholar
  31. Lehikoinen E, Sparks T (2010) Changes in migration. In: Møller AP, Fiedler W, Berthold P (eds) Effects of climate change on birds. Oxford University Press, Oxford, pp 89–112Google Scholar
  32. Lehikoinen A, Jaatinen K, Vähätalo AV, Clausen P, Crowe O, Deceuninck B, Hearn R, Holt CA, Hornman M, Keller V, Nilsson L, Langendoen T, Tomankova I, Wahl J, Fox AD (2013) Rapid climate driven shifts in wintering distributions of three common waterbird species. Glob Change Biol 19:2071–2081CrossRefGoogle Scholar
  33. Lindenmayer DB, Likens GE (2009) Adaptive monitoring: a new paradigm for long-term research and monitoring. Trends Ecol Evol 24:482–486PubMedCrossRefGoogle Scholar
  34. Madsen J (1998) Experimental refuges for migratory waterfowl in Danish wetlands. II. Tests of hunting disturbance effects. J Appl Ecol 35:398–417CrossRefGoogle Scholar
  35. Madsen J, Fox AD (1997) The impact of hunting disturbance on waterbird populations—the concept of flyway networks of disturbance-free areas. Gibier Faune Sauvage 14:201–209Google Scholar
  36. McCarty K, Bildstein KL (2005) Using autumn hawk watch to track raptor migration and to monitor populations of North American birds of prey. US Serv Gen Tech Rep PSW 191:718–725Google Scholar
  37. Miller-Rushing AJ, Primack RB, Sekercioglu CH (2010) Conservation consequences of climate change for birds. In: Møller AP, Fiedler W, Berthold P (eds) Effects of climate change on birds. Oxford University Press, Oxford, pp 295–309Google Scholar
  38. Mitchell C, Colhoun K, Fox AD, Griffin L, Hall C, Hearn R, Holt C, Walsh A (2010) Trends in goose numbers wintering in Britain and Ireland, 1995–2008. Ornis Svec 20:128–143Google Scholar
  39. Møller AP, Fiedler W, Berthold P (eds) (2010) Effects of climate change on birds. Oxford University Press, OxfordGoogle Scholar
  40. Newton I (2008) The migration ecology of birds. Academic, OxfordGoogle Scholar
  41. Niemuth ND, Solberg JW (2003) Response of waterbirds to number of wetlands in the Prairie Pothole Region of North Dakota, USA. Waterbirds 26:233–238CrossRefGoogle Scholar
  42. Owen M, Salmon DG (1984) Wildfowl distribution in relation to reserves and hunting. Report from the Shooting Disturbance Seminar, British Association for Shooting and Conservation. Unpublished report, Wildfowl and Wetlands Trust, SlimbridgeGoogle Scholar
  43. Pennington MG (2000) Greylag Geese breeding in Shetland. Scot Birds 21:27–35Google Scholar
  44. Rosenfield RN, Lamers D, Evans DL, Evans M, Cava JA (2011) Shift to later timing by autumnal migrating Sharp-shinned Hawks. Wilson J Ornithol 123:154–158CrossRefGoogle Scholar
  45. Söderquist P, Gunnarsson G, Elmberg J (2013) Longevity and migration distance differ between wild and hand-reared mallards Anas platyrhynchos in Northern Europe. Eur J Wildl Res 59:159–166CrossRefGoogle Scholar
  46. Spomer R (1982) Shortstopping. Kansas Wildl 39:4–8Google Scholar
  47. Takekawa JY, Heath SR, Douglas DC, Perry WM, Javed S, Newman SH, Suwal RN, Rahmani AR, Choudhury BC, Prosser DJ, Yan B, Hou Y, Batbayar N, Natsagdorj T, Bishop CM, Butler PJ, Frappell PB, Milsom WK, Scott GR, Hawkes LA, Wikelski M (2009) Geographic variation in Bar-headed Geese Anser indicus: connectivity of wintering areas and breeding grounds across a broad front. Wildfowl 59:100–123Google Scholar
  48. Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature 399:213CrossRefGoogle Scholar
  49. Tománková I, Boland H, Reid N, Fox AD (2013a) Assessing the extent to which temporal changes in waterbird community composition are driven by either local, regional or global factors. Aquat Conserv 23:343–355CrossRefGoogle Scholar
  50. Tománková I, Reid N, Enlander I, Fox AD (2013b) Ringing and recovery data prove poor at detecting migratory short-stopping of diving ducks associated with climate change throughout Europe. Ringing Migr 28:30–38CrossRefGoogle Scholar
  51. Visser ME, Both C, Lambrechts MM (2004) Global climate change leads to mistimed avian reproduction. Adv Ecol Res 35:89–110CrossRefGoogle Scholar
  52. Viverette C, Goodrich L, Pokras M (1994) Levels of DDE in eastern flyway populations of migrating Sharp-shinned Hawks and the question of recent declines in numbers sighted. HMANA Migr Stud 20:5–7Google Scholar
  53. Viverette CB, Struve S, Goodrich LJ, Bildstein KL (1996) Decreases in migrating Sharp-shinned Hawks (Accipiter striatus) at traditional raptor-migration watch sites in eastern North America. Auk 113:32–40CrossRefGoogle Scholar
  54. Wilson WH Jr (1999) Bird feeding and irruptions of northern finches: are migrations short-stopped? North Am Bird Bander 24:113–121Google Scholar
  55. Zhao MJ, Cong PH, Barter M, Fox AD, Cao L (2012) The changing abundance and distribution of Greater White-fronted Geese Anser albifrons in the Yangtze River floodplain: impacts of recent hydrological changes. Bird Conserv Int 22:135–143CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2014

Authors and Affiliations

  • Johan Elmberg
    • 1
  • Rebecca Hessel
    • 2
  • Anthony David Fox
    • 3
  • Lars Dalby
    • 3
  1. 1.Division of Natural SciencesKristianstad UniversityKristianstadSweden
  2. 2.KristianstadSweden
  3. 3.Department of BioscienceAarhus UniversityRøndeDenmark

Personalised recommendations