Skip to main content

Fault bars and bacterial infection

Abstract

Fault bars are conspicuous malformations on bird feathers that are produced during feather growth. The causes of fault bars are poorly understood. In our study, we used the presence of Campylobacter jejuni infection in 302 urban feral pigeons (Columba livia) as a proxy of physiological stress and correlated this stress with fault bar abundance. The overall prevalence of Campylobacter infection in these birds was 24.5 %. Bacterial infection was equally prevalent in young birds and adults, but males showed a slightly higher prevalence than females. Fault bars were more abundant in young birds than in adults, particularly among young males. Pigeons with Campylobacter infection had more fault bars than uninfected birds. These results suggest that the physiological state of the individual bird could be as important as external stressors in determining the occurrence of fault bars and that parasites may play a role in fault bar formation.

Zusammenfassung

Hungerstreifen und bakterielle Infektionen

Hungerstreifen (fault bars) sind markante Missbildungen in Vogelfedern, die während des Federwachstums entstehen und deren Ursachen bislang noch nicht ganz verstanden werden. In dieser Untersuchung benutzten wir akute Campylobacter jejuni-Infektionen bei in Städten verwilderten Felsentauben (Columba livia) als Anzeiger für physiologischen Stress und korrelierten die Infektionen mit dem Vorhandensein von Hungerstreifen. Insgesamt fanden wir eine Verbreitung der Bakterien von 24,5 %. Die Infektionen kamen bei Jung- und Altvögeln gleich häufig vor, allerdings bei den Männchen etwas häufiger als bei den Weibchen. Hungerstreifen traten bei Jungvögeln häufiger auf als bei Adulten, vor allem bei jungen Männchen, und Tauben mit Campylobacter-Infektion zeigten mehr Hungerstreifen als nicht infizierte Vögel. Diese Ergebnisse legen die Vermutung nahe, dass für das Verständnis des Auftretens von Hungerstreifen der physiologische Status der Vögel ebenso wichtig ist wie externe Stress-Faktoren. Darüber hinaus sieht es so aus, als könnten Parasiten bei der Bildung von Hungerstreifen eine Rolle spielen.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Bortolotti GR, Dawson RD, Murza GL (2002) Stress during feather development predicts fitness potential. J Anim Ecol 71:333–342

    Article  Google Scholar 

  • Bortolotti GR, Marchant T, Blas J, Cabezas S (2009) Tracking stress: localisation, deposition and stability of corticosterone in feathers. J Exp Biol 212:1477–1482

    CAS  Article  Google Scholar 

  • Bull SA, Thomas A, Humphrey T, Ellis-Iversen J, Cook AJ, Lovell R, Jorgensen F (2008) Flock health indicators and Campylobacter spp. in commercial housed broilers reared in Great Britain. Appl Environ Microbiol 74:5408–5413

    CAS  Article  Google Scholar 

  • Cogan TA, Thomas AO, Rees LE, Taylor AH, Jepson MA, Williams PH, Ketley J, Humphrey TJ (2007) Norepinephrine increases the pathogenic potential of Campylobacter jejuni. Gut 56:1060–1065

    CAS  Article  Google Scholar 

  • Freed LA, Cann RL, Goff ML, Kuntz WA, Bodner GR (2005) Increase in avian malaria at upper elevation in Hawaii. Condor 107:753–764

    Article  Google Scholar 

  • Freed LA, Medeiros MC, Bodner GR (2008) Explosive increase in ectoparasites in Hawaiian forest birds. J Parasitol 94:1009–1021

    Article  Google Scholar 

  • International Organization for Standardization (ISO) (2006) Norm ISO 10272-1:2006. Microbiology of food and animal feeding stuffs––horizontal method for detection and enumeration of Campylobacter spp.: Part 1: detection method. ISO Secretariat, Geneva

  • Jovani R, Blas J (2004) Adaptive allocation of stress-induced deformities on bird feathers. J Evol Biol 17:294–301

    CAS  Article  Google Scholar 

  • Jovani R, Tella JL (2004) Age-related environmental sensitivity and weather mediated nestling mortality in white storks Ciconia ciconia. Ecography 27:611–618

    Article  Google Scholar 

  • Jovani R, Diaz-Real J (2012) Fault bars timing and duration: the power of studying feather fault bars and growth bands together. J Avian Biol 43:97–101

    Article  Google Scholar 

  • Kapperud G, Rosef O (1983) Avian wildlife reservoir of Campylobacter fetus subsp jejuni, Yersinia spp., and Salmonella spp. in Norway. Appl Env Microbiol 45:375–380

    CAS  Article  Google Scholar 

  • King JR, Murphy ME (1984) Fault bars in the feathers of white-crowned sparrows: dietary deficiency or stress of captivity and handling? Auk 101:168–169

    Article  Google Scholar 

  • Møller AP (1989) Viability costs of male tail ornaments in a swallow. Nature 339:132–135

    Article  Google Scholar 

  • Møller AP, Kimball RT, Erritzoe J (1996) Sexual ornamentation, condition, and immune defence in the house sparrow Passer domesticus. Behav Ecol Sociobiol 39:317–322

    Article  Google Scholar 

  • Moore JE, Corcoran D, Dooley JSG, Fanning S, Lucey B, Matsuda M, McDowell DA, Megraud F, Millar BC, O’Mahony R, O’Riordan L, O’Rourke M, Rao JR, Rooney PJ, Sails A, Whyte P (2005) Campylobacter. Vet Res 36:351–382

    CAS  Article  Google Scholar 

  • Murphy ME, King JR, Lu J (1988) Malnutrition during the postnuptial molt of White-crowned sparrows: feather growth and quality. Can J Zool 66:1403–1413

    Article  Google Scholar 

  • Murphy ME, Miller BT, King JR (1989) A structural comparison of fault bars with feather defects known to be nutritional induced. Can J Zool 67:1311–1317

    Article  Google Scholar 

  • Negro JJ, Bildstein KL, Bird DM (1994) Effects of food deprivation and handling stress on fault-bar formation in nestling American kestrels. Ardea 82:263–267

    Google Scholar 

  • Newell DG (2001) Animal models of C. jejuni colonization and disease and the lessons to be learned from similar Helicobacter pylori models. Symp Ser Soc Appl Microbiol 30:57S–67S

    Article  Google Scholar 

  • Pap PL, Barta Z, Tökölyi J, Vágási IC (2007) Increase of feather quality during moult: a possible implication of feather deformities in the evolution of partial moult in the great tit Parus major. J Avian Biol 38:471–478

    Article  Google Scholar 

  • Riddle O (1908) The genesis of fault-bars in feathers and the cause of alternation of light and dark fundamental bars. Biol Bull 14:328–370

    Article  Google Scholar 

  • Rohwer S, Ricklefs R, Rohwer V, Copple M (2009) Allometry of the duration of flight feather molt in birds. PLoS Biol 7(6):e1000132. doi:10.1371/journalpbio1000132

    Article  Google Scholar 

  • Romano A, Rubolini D, Caprioli M, Boncoraglio G, Ambrosini R, Saino N (2011) Sex-related effects of an immune challenge on growth and begging behaviour of barn swallow nestlings. PLoS One 6:e22805

    CAS  Article  Google Scholar 

  • Romero L, Strochlic D, Wingfield J (2005) Corticosterone inhibits feather growth: potential mechanism explaining seasonal down regulation of corticosterone during molt. Comp Biochem Physiol A Mol Integr Physiol 142:65–73

    Article  Google Scholar 

  • Sarasola JH, Jovani R (2006) Risk of feather damage explains fault bar occurrence in a migrant hawk, the Swainson’s hawk Buteo swainsoni. J Avian Biol 37:29–35

    Article  Google Scholar 

  • Sebright JS (1826) Observations upon hawking. J. Harding, London

    Google Scholar 

  • Sodhi NS (2002) A comparison of bird communities of two fragmented and two continuous Southeast Asian rainforests. Biodiv Conserv 11:1105–1119

    Article  Google Scholar 

  • Sol D, Santos DM, García P, Cuadrado M (1998) Competition for food in urban pigeons: the cost of being juvenile. Condor 298:304–1998

    Google Scholar 

  • Sol D, Santos DM, Cuadrado M (2000) Age-related site segregation in urban pigeons: experimental evidence of the competition hypothesis. Can J Zool 78:144–149

    Article  Google Scholar 

  • Uribe F, Senar JC, Colom L, Camerino M (1985) Morfometría de las palomas semidomésticas (Columba livia var.) de la ciudad de Barcelona. Misc Zool 9:339–345

    Google Scholar 

  • Vágási CI, Pap PL, Vincze O, Benkö Z, Marton A, Barta Z (2012) Haste makes waste but condition matters: molt rate-feather quality trade-off in a sedentary songbird. PLoS One 7:e40651

    Article  Google Scholar 

  • Velando A (2002) Experimental manipulation of maternal effort produces differential effects in sons and daughters: implications for adaptive sex ratios in the blue-footed booby. Behav Ecol 13:443–449

    Article  Google Scholar 

  • Waldenstrom J, Broman T, Carlsson I, Hasselquist D, Achterberg RP, Wagenaar JA, Olsen B (2002) Prevalence of C. jejuni, C. lari, and C. coli in different ecological guilds and taxa of migrating birds. Appl Environ Microbiol 68:5911–5917

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Colomba Control Company for their support in the sampling of pigeons. Víctor Peracho, Mª Dolors Ferrer, and Mercè de Simón are thanked for their support and collaboration in this study. RJ is supported by a Ramón y Cajal research contract (RYC-2009-03967) from the Ministerio de Ciencia e Innovación.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Jovani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jovani, R., Montalvo, T. & Sabaté, S. Fault bars and bacterial infection. J Ornithol 155, 819–823 (2014). https://doi.org/10.1007/s10336-014-1054-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-014-1054-8

Keywords

  • Bacteria
  • Feather
  • Physiology
  • Stress bars
  • Stress marks