Journal of Ornithology

, Volume 155, Issue 3, pp 679–687 | Cite as

Drivers of breeding numbers in a long-distance migrant, the Garganey (Anas querquedula): effects of climate and hunting pressure

Original Article

Abstract

A multitude of anthropogenic factors are threatening bird populations but their roles as drivers of population changes are generally poorly understood. Several duck species, for instance, have unfavorable conservation status at the Pan-European level but in most cases we do not know why the species have been declining, nor do we know actual drivers of their population dynamics. We studied population dynamics of the Garganey (Anas querquedula), a quarry species with unfavorable conservation status at the Pan-European level. As a trans-Saharan migrant, Garganey is potentially highly vulnerable to climate change impacts. We used long-term (1989–2012) data of breeding numbers from a study area in central Finland and assessed the relative importance of three climatic variables (representing conditions in wintering areas and during spring migration) and local hunting pressure in explaining the interannual variation in breeding numbers. Population size of Garganey showed a decreasing trend over the study period but also considerable interannual variation. Spring temperature in southern Finland was the most important factor in explaining interannual variation in breeding numbers. Rainfall in the wintering areas was also of importance, whereas the NAO (North Atlantic Oscillation) and local hunting pressure appeared not to be important. Our results suggest that weather conditions during spring migration largely drive interannual variation in Garganey breeding numbers at the NW edge of the species’ range. However, positive effects of warm springs may be counteracted by negative effects of drought in the wintering areas.

Keywords

Climate change Hunting pressure Population dynamics Spring migration Weather Wintering conditions 

Zusammenfassung

Einflussfaktoren auf Brutpaarzahlen bei einem Langstreckenzieher, der Knäkente (Anas querquedula): klimatische Effekte und Jagddruck

Eine Vielzahl anthropogener Einflussfaktoren bedrohen Vogelpopulationen. Ihre Rolle hinsichtlich Populationsveränderungen ist jedoch allgemein nur wenig verstanden. Verschiedene Entenarten beispielsweise besitzen einen unzureichenden Schutzstatus auf pan-europäischer Ebene. In den meisten Fällen sind weder die Gründe für die Rückgänge der Arten bekannt, noch sind die derzeitigen Auslöser für ihre Populationsdynamiken verstanden. Wir untersuchten die Populationsdynamik von Knäkenten (Anas querquedula), eine Zielart mit ungünstigem Erhaltungszustand auf pan-europäischer Ebene. Als Transsaharazieher sind Knäkenten potentiell stark gefährdet im Hinblick auf Auswirkungen des Klimawandels. Wir nutzten Langzeitdaten (1989–2012) zu Brutpaarzahlen aus einem Untersuchungsgebiet in Zentralfinnland und bewerteten die relative Bedeutung dreier klimatischer Faktoren (repräsentativ für die Bedingungen in den Überwinterungsgebieten und während des Frühjahrszuges) sowie den lokalen Jagddruck zur Erklärung von interannuellen Schwankungen im Brutbestand. Die Knäkenten-Population zeigt einen abnehmenden Trend während des Betrachtungszeitraumes, jedoch mit deutlichen Schwankungen zwischen den Jahren. Die Frühjahrstemperatur in Südfinnland war der wichtigste Faktor zur Erklärung der variierenden Brutpaarzahlen zwischen den Jahren. Außerdem war der Niederschlag in den Überwinterungsgebieten ebenfalls von Bedeutung, wohingegen die NAO (Nordatlantische Oszillation) und der lokale Jagddruck unerheblich zu sein schienen. Unsere Ergebnisse deuten daraufhin, dass die Wetterbedingungen während des Frühjahrszuges weitgehend die jährlichen Schwankungen der Brutpaarzahlen von Knäkenten an der nordwestlichen Grenze ihres Verbreitungsgebietes bewirken. Allerdings könnten die negativen Effekte von Dürren in den Wintergebieten den positiven Auswirkungen von warmen Frühjahren entgegenwirken.

References

  1. Bethke RW, Nudds TD (1995) Effects of climate change and land use on duck abundance in Canadian prairie-parklands. Ecol Appl 5:588–600CrossRefGoogle Scholar
  2. Blenckner T, Hillebrand H (2002) North Atlantic Oscillation signatures in aquatic and terrestrial ecosystems—a meta-analysis. Glob Change Biol 8:203–212CrossRefGoogle Scholar
  3. Bregnballe T, Noer H, Christensen TK, Clausen P, Asferg T, Fox AD, Simon D (2006) Sustainable hunting of migratory waterbirds: the Danish approach. In: Boere GC, Galbraith CA, Stroud DA (eds) Waterbirds around the world. The Stationery Office, Edinburgh, pp 854–860Google Scholar
  4. Brommer JE, Møller AP (2010) Range margins, climate change, and ecology. In: Møller AP, Fiedler W, Berthold P (eds) Effects of climate change on birds. Oxford University Press, Oxford, pp 249–274Google Scholar
  5. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  6. Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Beh Ecol Sociobiol 65:25–35Google Scholar
  7. Calvert AM, Walde SJ, Taylor PD (2009) Nonbreeding-season drivers of population dynamics in seasonal migrants: conservation parallels across taxa. Avian Conserv Ecol 4(2):5. http://www.ace-eco.org/vol4/iss2/art5/
  8. Chatfield C (2004) The analysis of time series: an introduction, 6th edn. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  9. Cramp S, Simmons KEL (eds) (1977) The birds of the Western Palearctic, vol I. Oxford University Press, OxfordGoogle Scholar
  10. Drever MC, Clark RG, Derksen C, Slattery SM, Toose P, Nudds TD (2012) Population vulnerability to climate change linked to timing of breeding in boreal ducks. Global Change Biol 18:480–492CrossRefGoogle Scholar
  11. Eglington SM, Pearce-Higgins JW (2012) Disentangling the relative importance of changes in climate and land-use intensity in driving recent bird population trends. PLoS One 7(3):e30407PubMedCentralPubMedCrossRefGoogle Scholar
  12. Finnish Game and Fisheries Research Institute (2013) Hunting 2012. Riista-ja kalatalous–Tilastoja 4/2013. Official statistics of Finland—agriculture, forestry and fisheryGoogle Scholar
  13. Fouquet M, Girard O, Tesson JL, Yesou P (1992) Actions preliminaries oiur la restauration des populations de Sarcelle d’été (Anas querquedula). Rapport de convention CEE/ONC 6610(90):6686Google Scholar
  14. Fretwell SD (1972) Populations in a seasonal environment. Princeton University Press, PrincetonGoogle Scholar
  15. Gordo O (2007) Why are bird migration dates shifting? A review of weather and climate effects on avian migratory phenology. Clim Res 35:37–58CrossRefGoogle Scholar
  16. Guillemain M, Sadoul M, Simon G (2005) European flyway permeability and abmigration in teal Anas crecca, an analysis based on ringing recoveries. Ibis 147:688–696CrossRefGoogle Scholar
  17. Guillemain M, Bertout J-M, Christensen TK, Pöysä H, Väänänen V-M, Triplet P, Schricke V, Fox AD (2010) How many juvenile Teal Anas crecca reach the wintering grounds? Flyway-scale survival rate inferred from wing age-ratios. J Ornithol 151:51–60CrossRefGoogle Scholar
  18. Guillemain M, Pöysä H, Fox AD, Arzel C, Dessborn L, Ekroos J, Gunnarsson G, Holm TE, Christensen TK, Lehikoinen A, Mitchell C, Rintala J, Møller AP (2013) Effects of climate change on European ducks: What do we know and what do we need to know? Wildl Biol 19:404–419Google Scholar
  19. Halkka A, Lehikoinen A, Velmala W (2011) Do long-distance migrants use temperature variations along the migration route in Europe to adjust the timing of their spring migration? Boreal Env Res 16(suppl B):35–48Google Scholar
  20. Huntley B, Green RE, Collingham YC, Willis SG (2007) A climatic atlas of European breeding birds. Durnham University, The RSPB and Lynx Edicions, BarcelonaGoogle Scholar
  21. Hüppop O, Hüppop K (2003) North Atlantic Oscillation and timing of spring migration in birds. Proc R Soc Lond B 270:233–240CrossRefGoogle Scholar
  22. Hurrell JW, Deser C (2010) North Atlantic climate variability: the role of the North Atlantic Oscillation. J Mar Syst 79:231–244CrossRefGoogle Scholar
  23. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. Geophys Monogr Ser 134:1–35Google Scholar
  24. Jenouvrier S (2013) Impacts of climate change on avian populations. Glob Change Biol 19:2036–2057CrossRefGoogle Scholar
  25. Johnson DH, Grier JW (1988) Determinants of breeding distributions of ducks. Wildl Monogr 100:1–37Google Scholar
  26. Kauppinen J, Väänänen V-M (1999) Factors affecting changes in waterfowl populations in eutrophic wetlands in the Finnish lake district. Wildl Biol 5:73–81Google Scholar
  27. Kauppinen J, Koskimies P, Väisänen RA (1991) Wildfowl round count. In: Koskimies P, Väisänen RA (eds) Monitoring bird populations. Zoological Museum, Finnish Museum of Natural History, Helsinki, pp 45–53Google Scholar
  28. Kear J (ed) (2005) Ducks, geese and swans, vol 2. Oxford University Press, OxfordGoogle Scholar
  29. Kjeldsen JP (2008) Ynglefugle i Vejlerne efter inddæmningen, med særlig vægt på feltstationsårene 1978–2003. Dansk Orn Foren Tidsskr 102:1–238 in Danish with English summaryGoogle Scholar
  30. Knudsen E, Lindén A, Both C, Jonzén N, Pulido F, Saino N, Sutherland WJ, Bach LA, Coppack T, Ergon T, Gienapp P, Gill JA, Gordo O, Hedenström A, Lehikoinen E, Marra PP, Møller AP, Nilsson ALK, Péron G, Ranta E, Rubolini D, Sparks TH, Spina F, Studds CE, Sæther SA, Tryjanowski P, Stenseth NC (2011) Challenging claims in the study of migratory birds and climate change. Biol Rev 86:928–946PubMedCrossRefGoogle Scholar
  31. Koskimies P, Väisänen RA (1991) Monitoring bird populations. A manual of methods applied in Finland, Zoological Museum, Finnish Museum of Natural History, HelsinkiGoogle Scholar
  32. Kucharski F, Molteni F, Bracco A (2006) Decadal interactions between the western tropical Pacific and the North Atlantic Oscillation. Clim Dyn 26:79–91CrossRefGoogle Scholar
  33. Lebel T, Ali A (2009) Recent trends in the Central and Western Sahel rainfall regime (1990-2007). J Hydrol 375:52–64CrossRefGoogle Scholar
  34. Leech DI, Crick HQP (2007) Influence of climate change on the abundance, distribution and phenology of woodland bird species in temperate regions. Ibis 149(Suppl 2):12–145Google Scholar
  35. Lehikoinen E, Sparks TH (2010) Changes in migration. In: Møller AP, Fiedler W, Berthold P (eds) Effects of climate change on birds. Oxford University Press, Oxford, pp 89–112Google Scholar
  36. Lehikoinen A, Vähätalo A (2000) Phenology of bird migration at the Hanko Bird Observatory, Finland, 1979-1999. Tringa 27:150–244 in Finnish with English summaryGoogle Scholar
  37. Lehikoinen E, Sparks TH, Zalakevicius M (2004) Arrival and departure dates. Adv Ecol Res 35:1–31CrossRefGoogle Scholar
  38. Lélé MI, Lamb PJ (2010) Variability of the Intertropical Front (ITF) and rainfall over the West African Sudan-Sahel zone. J Clim 23:3984–4004CrossRefGoogle Scholar
  39. Lindström J, Forchhammer MC (2010) Time-series analyses. In: Møller AP, Fiedler W, Berthold P (eds) Effects of climate change on birds. Oxford University Press, Oxford, pp 57–66Google Scholar
  40. Møller AP (2013) Biological consequences of global change on birds. Integr Zool 8:136–144PubMedCrossRefGoogle Scholar
  41. Møller AP, Rubolini D, Lehikoinen E (2008) Populations of migratory bird species that did not show a phonological response to climate change are declining. Proc Natl Acad Sci USA 105:16195–16200PubMedCentralPubMedCrossRefGoogle Scholar
  42. Møller AP, Fiedler W, Berthold P (2010a) Conclusions. In: Møller AP, Fiedler W, Berthold P (eds) Effects of climate change on birds. Oxford University Press, Oxford, pp 311–313Google Scholar
  43. Møller AP, Fiedler W, Berthold P (eds) (2010b) Effects of climate change on birds. Oxford University Press, OxfordGoogle Scholar
  44. Morrison CA, Robinson RA, Clark JA, Risely K, Gill J (2013) Recent population declines in Afro-Palaearctic migratory birds: the influence of breeding and non-breeding seasons. Diversity Distrib 19:1051–1058CrossRefGoogle Scholar
  45. Newton I (2004a) The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions. Ibis 146:579–600CrossRefGoogle Scholar
  46. Newton I (2004b) Population limitation in migrants. Ibis 146:197–226CrossRefGoogle Scholar
  47. Norman D, Peach WJ (2013) Density-dependent survival and recruitment in a long-distance Palaearctic migrant, the Sand Martin Riparia riparia. Ibis 155:284–296CrossRefGoogle Scholar
  48. Oja H, Pöysä H (2007) Spring phenology, latitude, and the timing of breeding in two migratory ducks: implications of climate change impacts. Ann Zool Fenn 44:475–485Google Scholar
  49. Ottersen G, Planque B, Belgrano A, Post E, Reid PC, Stenseth NC (2001) Ecological effects of the North Atlantic Oscillation. Oecologia 128:1–14CrossRefGoogle Scholar
  50. Pautasso M (2012) Observed impacts of climate change on terrestrial birds in Europe: an overview. Italian J Zool 79:296–314CrossRefGoogle Scholar
  51. Peach W, Baillie S, Underhill L (1991) Survival of British Sedge Warblers Acrocephalus schoenobaenus in relation to West African rainfall. Ibis 133:300–305CrossRefGoogle Scholar
  52. Pöysä H, Rintala J, Lehikoinen A, Väisänen RA (2013) The importance of hunting pressure, habitat preference and life history for population trends of breeding waterbirds in Finland. Eur J Wildl Res 59:245–256CrossRefGoogle Scholar
  53. Rainio K, Laaksonen T, Ahola M, Vähätalo AV, Lehikoinen E (2006) Climatic responses in spring migration of boreal and arctic birds in relation to wintering area and taxonomy. J Avian Biol 37:507–515CrossRefGoogle Scholar
  54. Reif J (2013) Long-term trends in bird populations: a review of patterns and potential drivers in North America and Europe. Acta Ornithol 48:1–16CrossRefGoogle Scholar
  55. Robinson RA, Crick HQP, Learmonth JA, Maclean IMD, Thomas CD, Bairlein F, Forchhammer MC, Francis CM, Gill JA, Godley BJ, Harwood J, Hays GC, Huntley B, Hutson AM, Pierce GJ, Rehfisch MM, Sims DW, Santos MB, Sparks TH, Stroud DA, Visser ME (2008) Travelling through a warming world: climate change and migratory species. Endang Species Res 7:87–99CrossRefGoogle Scholar
  56. Rubolini D, Møller AP, Rainio K, Lehikoinen E (2007) Intraspecific consistency and geographic variability in temporal trends of spring migration phenology among European bird species. Clim Res 35:135–2007CrossRefGoogle Scholar
  57. Sæther B-E, Engen S (2010) Population consequences of climate change. In: Møller AP, Fiedler W, Berthold P (eds) Effects of climate change on birds. Oxford University Press, Oxford, pp 67–75Google Scholar
  58. Sæther B-E, Sutherland WJ, Engen S (2004) Climate influences on avian population dynamics. Adv Ecol Res 35:185–209CrossRefGoogle Scholar
  59. Sæther B-E, Lillegård M, Grøtan V, Drever MC, Engen S, Nudds TD, Podruzny KM (2008) Geographical gradients in the population dynamics of North American prairie ducks. J Anim Ecol 77:869–882PubMedCrossRefGoogle Scholar
  60. Saino N, Ambrosini R, Rubolini D, von Hardenberg J, Provenzale A, Hüppop O, Hüppop K, Lehikoinen A, Lehikoinen E, Rainio K, Romano M, Sokolov L (2011) Climate warming, ecological mismatch at arrival and population decline in migratory species. Proc Roy Soc Lond B 278:835–842CrossRefGoogle Scholar
  61. Sanderson FJ, Donald PF, Pain DJ, Burfield IJ, van Bommel FPJ (2006) Long-term population declines in Afro-Palearctic migrant birds. Biol Conserv 131:93–105CrossRefGoogle Scholar
  62. Schricke V (2001) Elements for a garganey (Anas querquedula) management plan. Game Wildl Sci 18:9–41Google Scholar
  63. Scott DA, Rose PM (1996) Atlas of Anatidae populations in Africa and Western Eurasia. Wetlands International Publication No. 14. Wetlands International, WageningenGoogle Scholar
  64. Siira J, Eskelinen O (1983) Changes in the abundance of breeding waterfowl in the Liminka Bay in 1954-81. Finnish Game Res 40:105–121Google Scholar
  65. Sjöberg K, Gunnarsson G, Pöysä H, Elmberg J, Nummi P (2010) Born to cope with climate change? Experimentally manipulated hatching time does not affect duckling survival in the mallard Anas platyrhynchos. Eur J Wildl Res 57:505–516CrossRefGoogle Scholar
  66. Smith RI (1970) Response of pintail breeding populations to drought. J Wildl Manage 34:943–946CrossRefGoogle Scholar
  67. Stervander M, Lindström Å, Jonzén N, Andersson A (2005) Timing of spring migration in birds: long-term trends, North Atlantic Oscillation and the significance of different migration routes. J Avian Biol 36:210–221CrossRefGoogle Scholar
  68. Urban EK (1993) Status of Palearctic wildfowl in Northeast and East Africa. Wildfowl 44:133–148Google Scholar
  69. Väänänen V-M (2001) Hunting disturbance and the timing of autumn migration in Anas species. Wildl Biol 7:3–9Google Scholar
  70. Vähätalo A, Rainio K, Lehikoinen A, Lehikoinen E (2004) Spring arrival of birds depends on the North Atlantic Oscillation. J Avian Biol 35:210–216CrossRefGoogle Scholar
  71. Valkama J, Vepsäläinen V, Lehikoinen A (2011) The third Finnish breeding bird atlas. Finnish Museum of Natural History and Ministry of Environment. http://atlas3.lintuatlas.fi/english. Accessed 7 Aug 2013
  72. Viksne J, Svazas S, Czajkowski A, Janus M, Mischenko A, Kozulin A, Kuresoo A, Serebryako V (2010) Atlas of duck populations in Eastern Europe. Akstis, VilniusGoogle Scholar
  73. von Haartman L (1973) Changes in the breeding bird fauna of North Europe. In: Farner DS (ed) Breeding biology of birds. National Academy of Sciences, Washington DC, pp 448–481Google Scholar
  74. Westgarth-Smith AR, Roy DB, Scholze M, Tucker A, Sumpter JP (2012) The role of the North Atlantic Oscillation in controlling UK butterfly population size and phenology. Ecol Entomol 37:221–232PubMedCentralPubMedCrossRefGoogle Scholar
  75. Wetlands International (2013) Waterbird Population Estimates. http://wpe.wetlands.org. Accessed 2 Dec 2013
  76. Withey P, van Kooten GC (2011) The effect of climate change on optimal wetlands and waterfowl management in Western Canada. Ecol Econ 70:798–805CrossRefGoogle Scholar
  77. Zwarts L, Bijlsma RG, van der Kamp J, Wymenga E (2009) Living on the edge: wetlands and birds in a changing Sahel. KNNV Publishing, ZeistGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2014

Authors and Affiliations

  1. 1.Finnish Game and Fisheries Research Institute, Joensuu Game and Fisheries ResearchJoensuuFinland
  2. 2.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations