Journal of Ornithology

, Volume 155, Issue 1, pp 283–290 | Cite as

Optimization of circadian adaptation to physical enrichment: effects on activity behavior in a subtropical songbird

  • Shalie Malik
  • Puja Budki
  • Sangeeta Rani
  • Vinod Kumar
Original Article

Abstract

Environmental enrichment can have effects on the physiology and behavior of animals. In our study we addressed the effects of physical enrichment on the activity behavior of a subtropical songbird, the Spotted Munia (Lonchura punctulata). Specifically, we measured the activity–rest pattern in two groups of singly housed Spotted Munia (N = 6 each), with or without alterations in cage environment, in both the rhythmic (synchronized) and arrhythmic states. Birds were sequentially exposed to a 12/12-h light/dark (12L/12D) photoperiod (synchronized, rhythmic state) and to constant bright light (LL; arrhythmic state; bright LL causes disruption of circadian rhythmicity) for 6 and 2 weeks, respectively. Group 1 birds’ cages were enriched with green grass nest cups and green twig foliate perches, which altered the complexity of the caged environment, representing the enriched environment (EE). Group 2 birds’ cages remained as before; representing the non-enriched environment (NE). Birds on 12L exhibited a bimodal diurnal activity pattern with similar activity levels regardless of their cage environment. In comparison, birds in the EE exhibited a significantly smaller phase difference between light and activity onsets and, therefore, showed a shorter activity duration than those housed in the NE. Further, in the first week of LL, both EE and NE birds exhibited a similar response, with half of birds in each group in circadian rhythmic and arrhythmic states. In the second week of LL, all birds showed circadian arrhythmia, but more birds in the EE than in the NE had rhythmic activity bouts, with four of six EE birds and one of six NE birds being in ultradian rhythm. Thus, physical enrichment of the cage environment influenced the pattern, phase and duration of activity behavior in the Spotted Munia. We suggest that the physical environment actively contributes to the optimization of circadian clock controlled behavior in animals.

Keywords

Activity Circadian Environment enrichment Spotted Munia 

Zusammenfassung

Optimierung der zirkadianen Anpassung an ein bereichertes Umfeld: Auswirkungen auf das Aktivitätsverhalten eines subtropischen Singvogels

Eine Bereicherung des Lebensumfelds (“Environmental Enrichment”) kann die Physiologie und das Verhalten von Tieren beeinflussen. Die vorliegende Studie befasst sich mit den Auswirkungen von Enrichment-Maßnahmen auf das Aktivitätsverhalten eines subtropischen Singvogels, des Muskatbronzemännchens (Lonchura punctulata). Wir dokumentierten die Aktivitäts-Ruhe-Muster für zwei Gruppen einzeln gehaltener Bronzemännchen (jeweils N = 6), mit beziehungsweise ohne Veränderungen des Käfigumfelds, im jeweils rhythmischen (synchronisierten) oder arrhythmischen Zustand. Die Vögel wurden nacheinander einem Zwölfstundentag (12L: 12D; synchronisiert, rhythmischer Zustand) und ständiger Helligkeit (LL; arrhythmischer Zustand—Dauerlicht stört die zirkadiane Rhythmik) ausgesetzt, für jeweils sechs beziehungsweise zwei Wochen. Die Käfige der Vogelgruppe 1 wurden mit Nestern aus grünem Gras und mit grün belaubten Zweigen als Sitzstangen ausgestattet, welche die Komplexität der Käfigumgebung veränderten—hier als bereichertes Umfeld Enriched Environment (EE) bezeichnet. Die Käfige der Vogelgruppe 2 blieben unverändert—hier als nicht bereichertes Umfeld Non-enriched Environment (NE) bezeichnet. Die unter den Bedingungen eines Zwölfstundentages (12L) gehaltenen Vögel zeigten ein zweigipfliges, tagaktives Muster mit vom Käfigumfeld unabhängigen, ähnlichen Aktivitätsniveaus. Andererseits wiesen Vögel im EE signifikant geringere Phasenunterschiede zwischen einsetzender Helligkeit und beginnender Aktivität auf, hatten also eine kürzere Aktivitätsdauer als Vögel im NE. Des Weiteren zeigten sowohl die EE-Vögel als auch die NE-Vögel in der ersten Woche unter LL ähnliche Reaktionen: Jeweils die Hälfte der Vögel in jeder Gruppe befand sich in zirkadian rhythmischem beziehungsweise arrhythmischen Zustand. In der zweiten Woche unter LL waren dann alle Vögel zirkadian arrythmisch, allerdings gab es mehr Individuen mit rhythmischen Aktivitätsschüben im EE als im NE; 4/6 EE-Vögel und 1/6 NE-Vögel zeigten ultradiane Rhythmik. Somit beeinflusste eine Bereicherung des Käfigumfelds Muster, Phase sowie Dauer des Aktivitätsverhaltens beim Muskatbronzemännchen. Dieses legt nahe, dass eine Bereicherung des Lebensumfelds einen aktiven Beitrag zur Optimierung der Verhaltenssteuerung durch eine zirkadiane Uhr bei Tieren leistet.

References

  1. Ali S, Ripley SD (1974) Handbook of the birds of India and Pakistan. Oxford University Press, BombayGoogle Scholar
  2. Appleby MC, Mench JA, Hughes BO (2004) Poultry behavior and welfare. CABI, WallingfordGoogle Scholar
  3. Aschoff J (1981) Free running and entrained circadian rhythms. In: Aschoff J (ed) Handbook of behavioral neurobiology. Plenum, New York, pp 81–93Google Scholar
  4. Barnea A, Nottebohm F (1994) Seasonal recruitment of hippocampal neurons in adult free-ranging black-capped chickadees. Proc Natl Acad Sci USA 91:11217–11221PubMedCrossRefGoogle Scholar
  5. Barnea A, Nottebohm F (1996) Recruitment and replacement of hippocampal neurons in young and adult chickadees: an addition to the theory of hippocampal learning. Proc Natl Acad Sci USA 93:714–718PubMedCrossRefGoogle Scholar
  6. Bateson M, Matheson SM (2007) Performance on a categorization task suggests that removal of environmental enrichment induces ‘pessimism’ in captive European Starlings (Sturnus vulgaris). Anim Welf 16:33–36Google Scholar
  7. Bloomsmith MA, Brent LY, Schapiro SJ (1991) Guidelines for developing and managing and environmental enrichment program for nonhuman primates. Lab Anim Sci 41:372–377PubMedGoogle Scholar
  8. Boulas Z, Macchni M, Houpt TA, Terman M (1996) Photic entrainment in hamsters: effect of simulated twilights and next box availability. J Biol Rhythms 11:216–223CrossRefGoogle Scholar
  9. Challet E, Pevet P (2003) Interactions between photic and non photic stimuli to synchronize the master circadian clock in mammals. Front Biosci 8:246–257CrossRefGoogle Scholar
  10. Daan S, Aschoff J (1975) Circadian rhythms of locomotor activity in captive birds and mammals: their variations with season and latitude. Oecologia 18:269–316CrossRefGoogle Scholar
  11. Dethier VG, Stellar E (1970) Animal Behavior., Foundations of modern biology series. Prentice-Hall, Englewood CliffsGoogle Scholar
  12. Durrell Wildlife Conservation Trust (1999) Wellbeing of zoo animals, environmental enrichment. In: Breeding and conservation of endangered species training manual. Durrell Wildlife Conservation Trust, Vingtaine de Rozel, Trinity, Island of Jersy, pp 157–185Google Scholar
  13. Erkert HG (1989) Characteristic of the circadian activity rhythm in common marmosets (Callithrix j jacchus). Am J Primatol 17:271–286CrossRefGoogle Scholar
  14. Erkert HG, Grober J (1986) Direct modulation of activity and body temperature of owl monkeys (Aotus lemurinus griseimembra) by low light intensities. Folia Primatol 47:171–188PubMedCrossRefGoogle Scholar
  15. Fairhurst GD, Frey MD, Reichert JF, Szelest I, Kelly DM, Bortolotti GR (2011) Does environmental enrichment reduce stress? An integrated measure of corticosterone from feathers provides a novel perspective. PloS One 6:e17663PubMedCentralPubMedCrossRefGoogle Scholar
  16. Hau M, Gwinner E (1996) Food as a circadian zeitgeber for house sparrows: the effect of different food access durations. J Biol Rhythms 11:196–207PubMedCrossRefGoogle Scholar
  17. Hebb DO (1947) The effects of early experience on problem solving at maturity. Am Psychol 2:306–307Google Scholar
  18. Iwahana E, Karatsoreos I, Shibata S, Silver R (2008) Gonadectomy reveals sex differences in circadian rhythms and suprachiasmatic nucleus androgen receptors in mice. Horm Behav 53: 422–430Google Scholar
  19. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495PubMedCrossRefGoogle Scholar
  20. Kim EH, Sufka KJ (2011) The effects of environmental enrichment in the chick anxiety-depression model. Behav Brain Res 221:276–281PubMedCrossRefGoogle Scholar
  21. Marashi V, Barnekow A, Ossendorf E, Sachser N (2003) Effects of different forms of environmental enrichment on behavioral, endocrinological and immunological parameters in male mice. Horm Behav 43:281–292PubMedCrossRefGoogle Scholar
  22. Marques MD, Waterhouse JM (1994) Masking and the evolution of circadian rhythmicity. Chronobiol Int 11:146–155PubMedCrossRefGoogle Scholar
  23. Meehan CL, Garner JP, Mench JA (2004) Environmental enrichment and development of cage stereotypy in orange-winged Amazon Parrots (Amazona amazonica). Dev Psychobiol 44:209–218PubMedCrossRefGoogle Scholar
  24. Mendes ALB, Menezes AAL, Azevedo CVM (2008) The influence of social cues on circadian activity rhythm resynchronization to the light dark cycle in common marmosets (Callithrix jacchus). Biol Rhythm Res 39:469–479CrossRefGoogle Scholar
  25. Menezes AAL, Moreira LFS, Azevedo CVM, Costa SF, Castro CSS (1993) Behavioural rhythm in the captive common marmoset (Callithrix jacchus) under natural environment conditions. Braz J Med Biol Res 26:741–745Google Scholar
  26. Menezes AAL, Moreira LFS, Marques MD (1996) Activity onset and offset of Callithrix jacchus (primates: Callitrichidae) showing seasonal variations in an equatorial region. In: Abstracts of the 16th Congress International Primatological Society. International Primatological Society, MadisonGoogle Scholar
  27. Miller KA, Mench JA (2006) Differential effects of 4 types of environmental enrichment on aggressive pecking, feather pecking, feather loss, food wastage and productivity in Japanese quail. Br Poult Sci 47:646–658PubMedCrossRefGoogle Scholar
  28. Mrosovsky N (1999) Masking: history, definitions and measurements. Chronobiol Int 16:415–429PubMedCrossRefGoogle Scholar
  29. Nazar FN, Marin RH (2011) Chronic stress and environmental enrichment as opposite factors affecting the immune response in Japanese quail (Coturnix coturnix japonica). Stress 14:166–173PubMedGoogle Scholar
  30. Newberry RC (2004) Cannibalism. In: Perry GC (ed) Welfare of the laying hen. CABI, Wallingford, pp 239–258Google Scholar
  31. Pant K, Chandola-Saklani A (1992) Pinealectomy and LL abolished circadian perching rhythms but did not alter circannual reproductive or fattening rhythms in finches. Chronobiol Int 9:413–420PubMedCrossRefGoogle Scholar
  32. Prior H, Sachser N (1995) Effects of enriched housing environment on the behaviour of young male and female mice in four exploratory tasks. J Exp Anim Sci 37:57–68Google Scholar
  33. Quick DLF (1984) An integrative approach to environmental engineering in zoos. Zoo Biol 3:65–77CrossRefGoogle Scholar
  34. Rampon C, Tang YP, Goodhouse J, Shimizu E, Kyin M, Tsien JZ (2000) Enrichment induces structural changes and recovery from non-spatial memory deficits in CA1 NMDAR1 knockout mice. Nat Neurosci 3:238–244PubMedCrossRefGoogle Scholar
  35. Rani S, Singh S, Malik S, Singh J, Kumar V (2009) Synchronization of Indian weaver bird circadian rhythms to food and light zeitgebers: role of pineal. Chronobiol Int 26:653–665PubMedCrossRefGoogle Scholar
  36. Redlin U, Mrosovsky N (1999) Masking of locomotor activity in hamsters. J Comp Physiol A 184:429–437PubMedCrossRefGoogle Scholar
  37. Refinetti R (2004) Daily activity pattern of a nocturnal and a diurnal rodent in a seminatural environment. Physiol Behav 82:285–294PubMedCrossRefGoogle Scholar
  38. Reinhardt V (1999) Pair-housing overcomes self-biting behavior in macaques. Lab Primatol Newsl 38:4Google Scholar
  39. Rodenburg TB, Koene P (2004) Feather pecking and feather loss. In: Perry GC (ed) Welfare of the laying hen. CABI, Wallingford, pp 227–238Google Scholar
  40. Röttger C, Marashi V, Sachser N (2001) Effects of environmental enrichment on anxiety, exploratory behaviour, locomotor activity and learning in male mice of the inbred strain AB/Gat. Zoology 104:8Google Scholar
  41. Singh J, Rani S, Kumar V (2010) Presence of a conspecific renders survival advantages in the migratory redheaded bunting: test through the effects of restricted feeding on circadian response and survivorship. Chronobiol Int 27:111–127PubMedCrossRefGoogle Scholar
  42. Singh J, Budki P, Rani S, Kumar V (2012a) Temperature alters the photoperiodically controlled phenologies linked with migration and reproduction in a night-migratory songbird. Proc R Soc B 279:509–515PubMedCrossRefGoogle Scholar
  43. Singh J, Rani S, Kumar V (2012b) Functional similarity in relation to the external environment between circadian behavioral and melatonin rhythms in the subtropical Indian weaver bird. Horm Behav 61:527–534PubMedCrossRefGoogle Scholar
  44. van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev 1:191–198CrossRefGoogle Scholar
  45. Young RJ (2003) Environmental enrichment for captive animals. Blackwell, Oxford, pp 30–44CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2013

Authors and Affiliations

  • Shalie Malik
    • 1
  • Puja Budki
    • 1
  • Sangeeta Rani
    • 1
  • Vinod Kumar
    • 2
  1. 1.DST-IRHPA Center for Excellence in Biological Rhythm Research, Department of ZoologyUniversity of LucknowLucknowIndia
  2. 2.DST-IRHPA Center for Excellence in Biological Rhythm Research, Department of ZoologyUniversity of DelhiDelhiIndia

Personalised recommendations