Journal of Ornithology

, Volume 155, Issue 2, pp 367–378 | Cite as

Small range and distinct distribution in a satellite breeding colony of the critically endangered Waved Albatross

  • Jill A. Awkerman
  • Sebastian Cruz
  • Carolina Proaño
  • Kathryn P. Huyvaert
  • Gustavo Jiménez Uzcátegui
  • Andres Baquero
  • Martin Wikelski
  • David J. Anderson
Original Article

Abstract

To determine the proximate consequences of the limited breeding distribution of the critically endangered Waved Albatross (Phoebastria irrorata), we present continuous breeding season GPS tracks highlighting differences in behaviour, destinations, and distances travelled between three distinct colonies: two in Galápagos and one closer to the South American continent on Isla de la Plata, where a small number of pairs nest. Accelerometer data paired with GPS locations allowed operational classifications of Waved Albatross behaviour. All birds from Galápagos travelled eastward to the continental shelf and foraged southward along the Peruvian coast. Birds from Isla de la Plata made more and shorter foraging trips and used habitat north of the destinations of Galápagos birds. La Plata birds foraged in areas through which Galápagos birds commuted, and had slower average flight speeds and shorter commutes. Overall, albatrosses from La Plata might operate under a consistently lower return but they also incur lower costs compared to birds from Galápagos, which take fewer trips involving longer time investment. Galápagos birds may be able to forage more effectively based on more abundant or more profitable food patches in those highly productive areas. Foraging destinations of birds from the two Galápagos colonies were similar and overlapped areas that presented localized mortality risk from artisanal fisheries in previous years. This study, performed across the species’ breeding range, reveals the different foraging distribution of La Plata albatrosses and the potential conservation value of this small colony in terms of maintenance of spatial diversity and behavioural plasticity.

Keywords

Galápagos La Plata Seabird Tracking GPS Accelerometer 

Zusammenfassung

Kleines Verbreitungsgebiet und klar abgegrenzte Verteilung einer Satelliten-Brutkolonie des vom Aussterben bedrohten Galapagosalbatros

Um die unmittelbaren Folgen der begrenzten Brutverbreitung des vom Aussterben bedrohten Galapagosalbatros (Phoebastria irrorata) zu ermitteln, stellen wir hier kontinuierliche GPS-Streckenaufzeichnungen zur Brutzeit vor, welche Unterschiede im Verhalten, den Flugzielen und den jeweils zurückgelegten Wegen zwischen drei separaten Kolonien aufzeigen: zwei auf Galapagos und eine näher am südamerikanischen Kontinent gelegene auf der Isla de la Plata, wo eine kleine Anzahl von Paaren nistet. Die Kombination der Daten von Beschleunigungsmessern mit GPS-Ortsdaten ermöglichte eine operative Klassifizierung des Verhaltens der Galapagosalbatrosse. Alle Vögel aus Galapagos flogen ostwärts zum kontinentalen Schelf und suchten ihre Nahrung südwärts entlang der peruanischen Küste. Vögel von der Isla de la Plata machten häufigere und kürzere Nahrungssuchflüge und nutzten dabei nördlicher gelegene Habitate als die Vögel von Galapagos. Die Vögel von La Plata jagten in Gegenden, die von den Galapagos-Vögeln überflogen wurden, hatten im Schnitt geringere Fluggeschwindigkeiten und legten kürzere Strecken zurück. Insgesamt können die Albatrosse von La Plata mit beständig niedrigeren Beuteerträgen auskommen, haben dafür aber auch einen geringeren Aufwand als die Vögel von Galapagos, die weniger Flüge machen, dafür aber mehr Zeit investieren. Die Galapagos-Vögel sind möglicherweise effektiver bei der Nahrungssuche, aufgrund reichhaltigerer oder profitablerer Nahrungsquellen in diesen hochproduktiven Regionen. Die Vögel der beiden Galapagos-Kolonien flogen zur Nahrungssuche zu ähnlichen Zielen, welche sich mit Regionen überschnitten, die in den Vorjahren aufgrund von Kleinfischerei ein lokal begrenztes Mortalitätsrisiko aufwiesen. Diese über das Brutgebiet der Art ausgedehnte Studie belegt die abweichende Verteilung der La Plata-Albatrosse bei der Nahrungssuche und den potenziellen Erhaltungswert dieser kleinen Kolonie für die Aufrechterhaltung räumlicher Diversität und der Plastizität des Verhaltens.

Supplementary material

Supplementary material 1 (MP4 25419 kb)

References

  1. Anderson DR (2008) Model based inference in the life sciences: a primer on evidence. Springer, New YorkCrossRefGoogle Scholar
  2. Anderson DJ, Cruz F (1998) Biology and management of the Waved Albatross at the Galápagos Islands. In: Robertson G, Gales R (eds) Albatross biology and conservation. Surrey Beatty & Sons, Chipping Norton, pp 105–109Google Scholar
  3. Anderson DJ, Huyvaert KP, Wood DR, Gillikin CL, Frost BJ, Mourtisen H (2003) At-sea distribution of Waved Albatrosses and the Galápagos Marine Reserve. Biol Conserv 110:367–373CrossRefGoogle Scholar
  4. Ashmole NP (1963) The regulation of numbers of tropical oceanic birds. Ibis 103:458–473Google Scholar
  5. Awkerman JA, Fukuda A, Higuchi H, Anderson DJ (2005) Foraging activity and submesoscale habitat use of Waved Albatrosses Phoebastria irrorata during the chick brooding period. Mar Ecol Prog Ser 291:289–300CrossRefGoogle Scholar
  6. Awkerman JA, Huyvaert KP, Mangel J, Alfaro-Shigueto J, Anderson DJ (2006) Incidental and intentional catch threatens Galápagos Waved Albatross. Biol Conserv 133:483–489CrossRefGoogle Scholar
  7. Birt VL, Birt TP, Goulet D, Cairns DK, Montevecchi WA (1987) Ashmole’s halo: direct evidence for prey depletion by a seabird. Mar Ecol Prog Ser 40:205–208CrossRefGoogle Scholar
  8. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  9. Davies RG, Irlich UM, Chown SL, Gaston KJ (2010) Ambient, productive and wind energy, and ocean extent predict global species richness of procellariiform seabirds. Global Ecol Biogeogr 19:98–110CrossRefGoogle Scholar
  10. Diamond AW (1978) Feeding strategies and population size in tropical seabirds. Am Nat 112:215–221CrossRefGoogle Scholar
  11. Fernández P, Anderson DJ, Sievert PR, Huyvaert KP (2001) Foraging destinations of three low-latitude albatross (Phoebastria) species. J Zool 254:391–404Google Scholar
  12. Fretwell SD, Lucas HL (1970) On territorial behaviour and other factors influencing habitat distribution in birds I. Theoretical development. Acta Biotheor 19:16–36CrossRefGoogle Scholar
  13. Gleiss AC, Wilson RP, Shepard ELC (2011) Making overall dynamic body acceleration work: on the theory of acceleration as a proxy for energy expenditure. Methods Ecol Evol 2:23–33. doi:10.1111/j.2041-210X.2010.00057.x CrossRefGoogle Scholar
  14. Halsey LG, Shepard ELC, Hulston CJ, Venables MC, White CR, Jeukendrup AE, Wilson RP (2008) Acceleration versus heart rate for estimating energy expenditure and speed during locomotion in animals: tests with an easy model species, Homo sapiens. Zoology 111:231–241PubMedCrossRefGoogle Scholar
  15. Halsey LG, Shepard ELC, Quintana F, Laich AG, Green JA, Wilson RP (2009) The relationship between oxygen consumption and body acceleration in a range of species. Comp Biochem Physiol Pt A 152:197–202Google Scholar
  16. Harris MP (1973) The biology of the waved albatross Diomedea irrorata of Hood Island, Galápagos. Ibis 115:483–510Google Scholar
  17. Holland RA, Wikelski M, Kümmeth F, Bosque C (2009) The secret life of oilbirds: new insights into the movement ecology of a unique avian frugivore. PLoS One 4(12):e8264. doi:10.1371/journal.pone.0008264 PubMedCentralPubMedCrossRefGoogle Scholar
  18. IOC, IHO, BODC (2009) Centenary Edition of the GEBCO Digital Atlas (published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans). British Oceanographic Data Centre, LiverpoolGoogle Scholar
  19. IUCN (2012) IUCN Red List of Threatened Species. www.iucnredlist.org. Last accessed 31 Jan 2013
  20. Jiménez-Uzcátegui G, Mangel J, Alfaro-Shigueto J, Anderson DJ (2006) Fishery bycatch of the waved albatros P. irrorata, a need for implementation of agreements. Galápagos Res 64:7–9Google Scholar
  21. MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100:603–609CrossRefGoogle Scholar
  22. Mangel JC, Alfaro Shigueto J, Baquero A, Darquea J, Godley BJ, Norris JH (2011) Seabird bycatch by small-scale fisheries in Ecuador and Peru. SBWG-4 Doc 24. In: 6th Meet Advis Committee Agreement on the Conservation of Albatrosses and Petrels, Guayyaquil, Equador, 27 Aug–2 Sept 2011Google Scholar
  23. Orians GH, Pearson NE (1979) On the theory of central place foraging. In: Horn DJ, Mitchell RD, Stairs GR (eds) Analyses of ecological systems. Ohio State University Press, Columbus, pp 154–177Google Scholar
  24. Phalan B, Phillips RA, Silk JRD, Afanasyev V, Fukuda A, Fox J, Catry P, Higuchi H, Croxall JP (2007) Foraging behaviour of four albatross species by night and day. Mar Ecol Prog Ser 340:271–286CrossRefGoogle Scholar
  25. Phillips RA, Wakefield ED, Croxall JP, Fukuda A, Higuchi H (2009) Albatross foraging behaviour: no evidence for dual foraging, and limited support for anticipatory regulation of provisioning at South Georgia. Mar Ecol Prog Ser 391:279–292CrossRefGoogle Scholar
  26. Pinaud D, Cherel Y, Weimerskirch H (2005) Effect of environmental variability on habitat selection, diet, provisioning behaviour and chick growth in yellow-nosed albatrosses. Mar Ecol Prog Ser 298:295–304CrossRefGoogle Scholar
  27. Pyke GH (1984) Optimal foraging theory: a critical review. Annu Rev Ecol Syst 15:523–575CrossRefGoogle Scholar
  28. R Development Core Team (2011) R: a language and environment for statistical computing. http://www.R-project.org
  29. Raymond B, Shaffer SA, Sokolov S, Woehler EJ, Costa DP, Einoder L, Hindell M, Hosie G, Pinkerton M, Sagar PM, Scott D, Smith A, Thompson DR, Vertigan C, Weimerskirch H (2010) Shearwater foraging in the southern ocean: the roles of prey availability and winds. PLoS One 5(6):e10960. doi:10.1371/journal.pone.0010960 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Rechten C (1985) The Waved Albatross in 1983: El Niño leads to complete breeding failure. In: Robinson G, del Pino EM (eds) El Niño in the Galápagos Islands: the 1982–1983 event. Charles Darwin Foundation for the Galápagos Islands, Quito, pp 227–238Google Scholar
  31. Shaffer SA, Costa DP, Weimerskirch H (2001) Behavioural factors affecting foraging effort of breeding wandering albatrosses. J Anim Ecol 70:864–874CrossRefGoogle Scholar
  32. Shepard ELC, Wilson RP, Quintana F, Gómez Laich A, Liebsch N, Albareda DA, Halsey LG, Gleiss A, Morgan DT, Myers AE, Newman C, Macdonald DW (2008) Identification of animal movement patterns using tri-axial accelerometry. Endanger Species Res 10:47–60. doi:10.3354/esr00084 CrossRefGoogle Scholar
  33. Suryan RM, Anderson DJ, Shaffer SA, Roby DD, Tremblay Y, Costa DP, Sievert PR, Sato F, Ozaki K, Balogh GR, Nakamura N (2008) Wind, waves, and wing loading: morphological specialization may limit range expansion of endangered albatrosses. PLoS One 3:e4016PubMedCentralPubMedCrossRefGoogle Scholar
  34. Wakefield ED, Phillips RA, Matthiopoulos J, Fukuda A, Higuchi H, Marshall GJ, Trathan PN (2009) Wind field and sex constrain the flight speeds of central-place foraging albatrosses. Ecol Monogr 79:663–679CrossRefGoogle Scholar
  35. Weimerskirch H, Lys P (2000) Seasonal changes in the provisioning behaviour and mass of male and female wandering albatrosses in relation to the growth of their chick. Polar Biol 23:733–744CrossRefGoogle Scholar
  36. Weimerskirch H, Salamolard M, Sarrazin F, Jouventin P (1993) Foraging strategy of wandering albatrosses through the breeding season: a study using satellite telemetry. Auk 110:325–342Google Scholar
  37. Weimerskirch H, Chastel O, Ackermann L, Chaurand T, Cuenot-Chaillet F, Hindermeyer X, Judas J (1994) Alternate long and short foraging trips in pelagic seabird parents. Anim Behav 47:472–476CrossRefGoogle Scholar
  38. Weimerskirch H, Zimmermann L, Prince PA (2001) Influence of environmental variability on breeding effort in a long-lived seabird, the yellow-nosed albatross. Behav Ecol 12:22–30CrossRefGoogle Scholar
  39. Wilson RP, White CR, Quintana F, Halsey LG, Liebsch N, Martin GR, Butler PJ (2006) Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. J Anim Ecol 75:1081–1090PubMedCrossRefGoogle Scholar
  40. Wilson RP, Shepard ELC, Liebsch N (2008) Prying into the intimate details of animal lives: use of a daily diary on animals. Endang Species Res 4:123–137Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. (Outside the USA) 2013

Authors and Affiliations

  • Jill A. Awkerman
    • 1
  • Sebastian Cruz
    • 2
  • Carolina Proaño
    • 2
  • Kathryn P. Huyvaert
    • 3
  • Gustavo Jiménez Uzcátegui
    • 4
  • Andres Baquero
    • 5
  • Martin Wikelski
    • 2
    • 6
  • David J. Anderson
    • 7
  1. 1.US Environmental Protection AgencyGulf Ecology DivisionGulf BreezeUSA
  2. 2.Max Planck Institute for OrnithologyRadolfzellGermany
  3. 3.Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsUSA
  4. 4.Estación Científica Charles DarwinPuerto AyoraEcuador
  5. 5.Universidad San Francisco de QuitoQuitoEcuador
  6. 6.Konstanz UniversityConstanceGermany
  7. 7.Department of BiologyWake Forest UniversityWinston-SalemUSA

Personalised recommendations