Journal of Ornithology

, Volume 155, Issue 1, pp 183–194 | Cite as

The winter roosting and diet of Black Grouse Tetrao tetrix in the north-western Italian Alps

  • Massimo Bocca
  • Enrico CaprioEmail author
  • Dan Chamberlain
  • Antonio Rolando
Original Article


The factors influencing the selection of Black Grouse Tetrao tetrix winter roost sites and choice of roosting strategy (open-air roosts vs. snow burrows, or ‘igloos’) were assessed in the Alps, including the influence of winter diet, snow conditions and habitat at different scales. Of 337 roosts detected, 31 % were igloos and 69 % were open-air roosts. At the larger scale (30 × 30 m), ground curvature, altitude, slope, southerly aspect and mountain pine Pinus montana uncinata cover were positively correlated with roost presence. At the smaller scale (10 m radius), roost presence was positively correlated with a northerly aspect, cover of green alder Alnus viridis, and a low cover of vegetation downslope from the roost. Roosting strategy was related to temperature and snow conditions (with more igloos when snow depth was greater, but fewer igloos when a hard snow crust had formed). The winter diet of the Black Grouse mostly comprised mountain pine needles (84 % of droppings). The results suggest that a range of factors influence choice of roost site, including predator avoidance, food availability and topography. The latter showed contrasting effects at different scales, suggesting that Black Grouse select colder sites (with deeper snow) within warmer areas (energetically more favourable). Management to encourage the mountain pine, whilst maintaining scattered green alder in the understorey, is likely to improve Black Grouse winter habitat quality. Choice of roosting strategy is, however, dictated by weather conditions. If the reduction in precipitation and snow cover continues as forecast, open-air roosting might be more frequent in the future. However, open-air roosting might increase predation risk, which could be deleterious for the species’ conservation.


Black Grouse Diet Habitat selection Landscape selection Roosting strategies Snow conditions 


Winterschlafplätze und Winternahrung von Birkhühnern Tetrao tetrix in den nordwestlichen italienischen Alpen

Wir untersuchten die Faktoren, welche im Winter die Schlafplatzwahl und die Übernachtungsstrategie (unter freiem Himmel beziehungsweise in Schneehöhlen oder “Iglus”) bei Birkhühnern Tetrao tetrix in den Alpen bestimmen, darunter den Einfluss von Winternahrung, Schneebedingungen und Habitat auf verschiedenen Ebenen. Von 337 gefundenen Schlafplätzen waren 31 % Iglus und 69 % befanden sich unter freiem Himmel. Auf der höheren Habitatebene (30 × 30 m) korrelierten Bodenunebenheit, Höhenlage, Hangneigung, Ausrichtung nach Süden und der Bewuchs mit Bergkiefer Pinus montana uncinata positiv mit dem Auftreten von Schlafplätzen. Auf der niedrigeren Habitatebene (10 m Radius) korrelierte das Vorhandensein von Schlafplätzen positiv mit der Ausrichtung nach Norden, dem Bewuchs mit Grünerle Alnus viridis und einer niedrigen Vegetationshöhe hangabwärts vom Schlafplatz. Die Strategie bei der Schlafplatzwahl hing von der Temperatur und den Schneeverhältnissen ab (mehr Iglus bei dickerer Schneedecke, aber weniger Iglus, wo sich eine harte Schneekruste gebildet hatte). Die Winternahrung der Birkhühner beinhaltete überwiegend Bergkiefernnadeln (84 % der Kotproben). Die Ergebnisse legen nahe, dass eine ganze Reihe von Faktoren eine Rolle bei der Schlafplatzwahl spielt, darunter Prädationsvermeidung, Nahrungsverfügbarkeit und die Geländetopografie. Letztere zeigte gegenteilige Auswirkungen auf den verschiedenen Habitatebenen, was nahelegt, dass Birkhühner kältere Stellen (mit tieferem Schnee) innerhalb wärmerer Bereiche (die energetisch günstiger sind) bevorzugen. Eine Bewirtschaftung, welche die Bergkiefern fördert, aber gleichzeitig verstreute Grünerlen im Unterwuchs erhält, würde vermutlich die Winterhabitatqualität für die Birkhühner verbessern. Allerdings wird die Übernachtungsstrategie von den Wetterverhältnissen bestimmt. Falls der Rückgang in Niederschlägen und Schneedecke wie erwartet fortschreitet, könnten Schlafplätze unter freiem Himmel zukünftig häufiger werden. Allerdings könnten solche offenen Schlafplätze das Prädationsrisiko erhöhen, was für den Erhalt der Art nachteilig sein könnte.



We are very grateful to C. Bich, M. Galli, G. Leonelli, S. Vuillermoz and the Park guards for help in data collection. We are also very grateful to two anonymous referees who provided constructive comments on an earlier draft. This research was partly funded by the Mont Avic Natural Park and by the European Union (Alcotra project “PHENOALP––Phénologie alpine/Fenologia alpina”).


  1. Aebischer AE, Robertson PA, Kenward RE (1993) Compositional analysis of habitat use from animal radio-tracking data. Ecology 74:1313–1325CrossRefGoogle Scholar
  2. Ager B (1967) Snow cover properties and winter climate in north Sweden. Phys Snow Ice 1(2):1029–1036Google Scholar
  3. Andreev AV (1988) Ecological energetics of palaearctic Tetraonidae in relation to chemical composition and digestibility of their winter diets. Can J Zool 66:1382–1388. doi: 10.1139/z88-203 CrossRefGoogle Scholar
  4. Angelstam P (1984) Sexual and seasonal differences in mortality of the black grouse Tetrao tetrix in boreal Sweden. Ornis Scand 15:123–134CrossRefGoogle Scholar
  5. Arlettaz R, Patthey P, Baltic M, Leu T, Schaub M, Palme R, Jenni-Eiermann S (2007) Spreading free-riding snow sports represent a novel serious threat for wildlife. Proc R Soc Lond B 274:1219–1224CrossRefGoogle Scholar
  6. Bartoń K (2011) MuMIn: multi-model inference. R package version 1.6.0. Available at
  7. Bätzing W, Rougier H (2005) Les Alpes. Un foyer de civilisation au coeur de l’Europe. LEP Editions, Le Mont-sur-LausanneGoogle Scholar
  8. Bergerud AT, Gratson MW (1988) Survival and breeding strategies of grouse. In: Bergerud AT, Gratson MW (eds) Adaptive strategies and population ecology of northern grouse. University of Minnesota Press, Minneapolis, pp 473–577Google Scholar
  9. Bird Life International (2004) Birds in Europe: population estimates, trends and conservation status. Bird Life Conservation Series No.12. UK Bird Life International, CambridgeGoogle Scholar
  10. Borchtchevski VG (2000) Diet of the black grouse (Tetrao tetrix) in Voldlozerski National Park, North-Western Russia. Game Wildl Sci 17:29–40Google Scholar
  11. Bradbury RB, Pearce-Higgins JW, Wotton S et al (2011) The influence of climate and topography in patterns of territory establishment in a range-expanding bird. Ibis 153:336–344CrossRefGoogle Scholar
  12. Braunisch V, Patthey P, Arlettaz R (2011) Spatially explicit modeling of conflict zones between wildlife and snow sports: prioritizing areas for winter refuges. Ecol Appl 21:955–967PubMedCrossRefGoogle Scholar
  13. Brunetti M, Lentini G, Maugeri M, Nanni T, Auer I, Böhm R, Schöener W (2009) Climate variability and change in the greater Alpine Region over the last two centuries based on multi-variable analysis. Int J Climatol 29:2197–2225CrossRefGoogle Scholar
  14. Byers CR, Steinhorst RK, Kraussman PR (1984) Clarification of a technique for analysis of utilization-availability data. J Wildl Manag 48:1050–1053CrossRefGoogle Scholar
  15. Caizergues A, Ellison LN (1997) Survival of black grouse Tetrao tetrix in the French Alps. Wildl Biol 3:177–186Google Scholar
  16. Catusse M (1989) Les abris hivernaux du grand tétras (Tetrao urogallus L.) dans les Pyrenées. (In French with an English summary: winter roosts of the capercaillie Tetrao urogallus L. in the Pyrenees). Gibier Faune Sauvage 6:81–90Google Scholar
  17. Chamberlain DE, Bocca M, Migliore L, Caprio E, Rolando A (2012) The dynamics of alternative male mating tactics in a population of black grouse Tetrao tetrix in the Italian Alps. J Ornithol 153:999–1009CrossRefGoogle Scholar
  18. Cramp S, Simmons KEL (eds.) (1979) The birds of the western palearctic, vol 2. Oxford University Press, OxfordGoogle Scholar
  19. Dormann CF, Elith J, Bacher S, Buchmann C et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:027–046CrossRefGoogle Scholar
  20. EEA (2010) Europe’s ecological backbone: recognising the true value of our mountains. EEA Report 6/2010. European Environment Agency, CopenhagenGoogle Scholar
  21. Ellison LN, Ménoni E, Léonard P (1989) Déplacement d’adultes de Tétras lyre (Tetrao tetrix) en automne et en hiver. Gibier Faune Sauvage 6:245–260Google Scholar
  22. Fierz C, Armstrong RL, Durand Y et al (2009) The International Classification for Seasonal Snow on the Ground. IHP-VII Technical Documents in Hydrology N°83, IACS Contribution No.1, UNESCO-IHP, ParisGoogle Scholar
  23. Filacorda S, Sepulcri A, Piasentier E, de Franceschi P (1997) Estimation of the chemical composition of black grouse Tetrao tetrix diets in the eastern Italian Alps. Wildl Biol 3:187–194Google Scholar
  24. Finne MH, Wegge P, Eliassen S, Odden M (2000) Daytime roosting and habitat preference of capercaillie Tetrao urogallus males in spring––the importance of forest structure in relation to anti-predator behaviour. Wildl Biol 6:241–249Google Scholar
  25. Gjerde I (1991) Cues in winter habitat selection by capercaillie II. Experimental evidence. Ornis Scand 22:205–212CrossRefGoogle Scholar
  26. Jenness J (2011) DEM Surface Tools v. 2.1.292. Jenness Enterprises. Available at:
  27. Leonelli G, Pelfini M, Morra di Cella U, Garavaglia V (2010) Climate warming and the recent treeline shift in the European Alps: the role of geomorphological factors in high-altitude sites. Ambio. doi: 10.1007/s13280-010-0096-2 PubMedCentralGoogle Scholar
  28. Lieser M (1996) Zur Nahrungswahl des Auerhuhns Tetrao urogallus im Schwarzwald. Ornithol Beob 93:47–58Google Scholar
  29. Ludwig GX, Alatalo RV, Helle P, Lindén H, Lindström J, Siitari H (2006) Short- and long-term population dynamical consequences of asymmetrical climate change in black grouse. Proc R Soc Lond B 273:2009–2016CrossRefGoogle Scholar
  30. Marjakangas A (1986) On the winter ecology of the black grouse, Tetrao tetrix, in central Finland. Acta Univ Oul ser A 183, 29:1–87Google Scholar
  31. Marjakangas A (1990) A suggested antipredator function for snow-roosting behaviour in the black grouse Tetrao tetrix. Ornis Scand 21(1):77–78CrossRefGoogle Scholar
  32. Marjakangas A (1992) Winter activity patterns of the black grouse Tetrao tetrix. Ornis Fenn 69:184–192Google Scholar
  33. Marjakangas A, Rintamäki H, Hissa R (1984) Thermal responses in the capercaillie Tetrao urogallus and the black grouse Lyrurus tetrix roosting in the snow. Physiol Zool 57:99–104Google Scholar
  34. Marti C (1985) Unterschiede in der Winterökologie von Hahn und Henne des Birkhuhns Tetrao tetrix im Aletschgebiet (Zentralalpen). Ornithol Beob 82:1–30Google Scholar
  35. Marti C, Pauli R (1985) Wintergewicht, Masse und Altersbestimmung in einer alpinen Population des Birkhuhns Tetrao tetrix. Ornithol Beob 82:231–241Google Scholar
  36. Martin K (2001) Wildlife in alpine and sub-alpine habitats. In: Johnson DH, O’Neil TA (eds) Wildlife-habitat relationships in Oregon and Washington. Oregon State University Press, Corvallis, pp 285–310Google Scholar
  37. Neu CW, Byers CR, Peek JM (1974) A technique for analysis of utilisation-availability data. J Wildl Manag 38:541–545CrossRefGoogle Scholar
  38. Ozenda P (1985) La végétation de la chaîne alpine dans l’espace montagnard européen. Masson, ParisGoogle Scholar
  39. Patthey P, Signorell N, Rotelli L, Arlettaz R (2011) Vegetation structural and compositional heterogeneity as a key feature in Alpine black grouse microhabitat selection: conservation management implications. Eur J Wildl Res 58(1):59–70CrossRefGoogle Scholar
  40. Ponce F (1985) Régime alimentaire hivernal du Tétras lyre Tetrao tetrix, sur deux zones des Alpes Françaises. Gibier Faune Sauvage 3:75–98Google Scholar
  41. Ponce F (1987) Le régime alimentaire du Tétras-lyre (Tetrao tetrix): synthèse bibliographique. Gibier Faune Sauvage 4:407–428Google Scholar
  42. Ponce F (1992) Régime alimentaire du Tétras lyre Tetrao tetrix dans les alpes françaises. Alauda 60:260–268Google Scholar
  43. Porkert J (1969) Zum Übernachten unserer Waldhühner im Schnee. Opera Corcont 6:93–102Google Scholar
  44. Rolando A (2002) On the ecology of home range in birds. Rev Écol (Terre Vie) 57:53–73Google Scholar
  45. Siano R, Herzog SA, Exo KM, Bairlein F (2011) Nahrungswahl ausgewilderter Auerhühner (Tetrao urogallus L.) im Harz. Vogelwarte 49:137–148Google Scholar
  46. Sim IMW, Eaton MA, Setchfield RP, Warren PK, Lindley P (2008) Abundance of male black grouse Tetrao tetrix in Britain in 2005, and change since 1995–96. Bird Study 55:304–313CrossRefGoogle Scholar
  47. Spidsø TK, Hjeljord O, Dokk J (1997) Seasonal mortality of black grouse Tetrao tetrix during a year with little snow. Wildl Biol 3:205–209Google Scholar
  48. Storch I (2000a) Conservation status and threats to grouse worldwide: an overview. Wildl Biol 6:213–222Google Scholar
  49. Storch I (2000b) An overview to black grouse conservation worldwide. Cah Ethol 20:153–164Google Scholar
  50. Storch I (2007a) Grouse: status survey and conservation action plan 2006-2010. IUCN, GlandGoogle Scholar
  51. Storch I (2007b) Conservation status of grouse worldwide: an update. Wildl Biol 13:5–12CrossRefGoogle Scholar
  52. Summers RW, Green RE, Proctor R, Dugan D, Lambie D, Moncrieff R, Moss R, Baines D (2004) An experimental study of the effects of predation on the breeding productivity of capercaillie and black grouse. J Appl Ecol 41:513–525CrossRefGoogle Scholar
  53. Valt M, Cianfarra P (2010) Recent snow cover variability in the Italian Alps. Cold Reg Sci Technol 64:146–157CrossRefGoogle Scholar
  54. Watson A, Moss R (2008) Grouse. The natural history of British and Irish species. Collins, LondonGoogle Scholar
  55. Zeitler A (1995) Skilauf und Rauhfusshühner. Der Ornithologische Beobachter 92:227–230Google Scholar
  56. Zeitler A (2000) Human disturbance, behaviour and spatial distribution of black grouse in skiing areas in the bavarian Alps. Cah Ethol 20:381–402Google Scholar
  57. Zettel J (1974) Nahrungsökologische Untersuchungen am Birkhühn Tetrao tetrix in den Schweizer Alpen. Ornithol Beob 71:186–246Google Scholar
  58. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2013

Authors and Affiliations

  • Massimo Bocca
    • 1
  • Enrico Caprio
    • 2
    Email author
  • Dan Chamberlain
    • 2
  • Antonio Rolando
    • 2
  1. 1.Parco Naturale Mont AvicChampdepraz (Aosta)Italy
  2. 2.Dipartimento di Scienze della Vita e Biologia dei SistemiTurinItaly

Personalised recommendations