Journal of Ornithology

, Volume 155, Issue 1, pp 1–12 | Cite as

Hummingbird health: pathogens and disease conditions in the family Trochilidae

  • Loreto A. Godoy
  • Lisa A. Tell
  • Holly B. Ernest


The hummingbird family (Trochilidae) is species rich; however the effects of infectious agents and diseases on these birds have received little attention. We compiled and summarized published findings describing disease conditions in hummingbirds in order to provide a comprehensive overview of existing data to assist management and conservation of captive and free-ranging hummingbird populations. Few pathogens and disease syndromes have been described. There is a lack of information on clinical signs, pathology and epidemiology and their variation across species for most disease syndromes. Consequently, there is not enough information to determine the impact of diseases in hummingbird populations, including those of conservation concern. Several physiological, behavioral and ecological characteristics render hummingbirds as an interesting species for the study of wildlife disease ecology. Additionally, feeding ecology with prodigious diets of insects and nectar support consideration as “environmental samplers”; hummingbirds will serve as potential sentinels for assessing the environmental impacts of pollutants and pesticides. We conclude that further studies are needed to better understand the role of diseases in hummingbird fitness and survival. In this sense, hummingbird health monitoring programs are fundamental to securing scientific information on normal and abnormal health parameters.


Bacteria Diseases Fungi Health Helminths Hummingbirds Infection Trochilidae Virus 


Gesundheit von Kolibris: Pathogene und Krankheitsbedingungen in der Familie Trochilidae

Die Kolibri-Familie (Trochilidae) ist artenreich; allerdings wurde Pathogenen und Krankheiten bei diesen Vögeln wenig Beachtung geschenkt. Wir sammelten veröffentlichte Ergebnisse mit Beschreibungen zu Krankheiten bei Kolibris, um einen umfassenden Überblick zu erhalten über vorhandene Daten zur Unterstützung von Management und Schutz sowohl in Gefangenschaft als auch frei lebender Populationen. Nur wenige Pathogene und Krankheiten wurden beschrieben. Für die meisten Krankheiten gibt es einen Mangel an Informationen über Klinik, Pathologie und Epidemiologie und deren Variationen über Artgrenzen hinweg. Als Konsequenz gibt es nicht genug Information über den Einfluss von Krankheiten auf Populationen von Kolibris, einschließlich gefährdeter Arten. Verschiedene physiologische, ökologische und Verhaltenseigenschaften machen Kolibris zu einer interessanten Gruppe von Arten zur Untersuchung der Krankheitsökologie von Wildtieren. Darüber hinaus könnten Kolibris aufgrund ihrer auf große Mengen von Insekten und Nektar basierende Diät als “Sammler von Umweltproben” in Erwägung gezogen werden. Kolibris könnten als potentielle Indikatoren für die Auswirkungen von Verschmutzungen und Pestiziden dienen. Allerdings sind weitere Untersuchungen notwendig, um die Rolle von Krankheiten für Fitness und Überleben bei Kolibris besser zu verstehen. In diesem Sinne sind Monitoring-Programme der Gesundheit von Kolibris grundlegend für die Sicherung wissenschaftlicher Informationen über normale und pathologische Gesundheits-Parameter.


  1. Altizer S, Bartel R, Han BA (2011) Animal migration and infectious disease risk. Science 331:296–302. doi:10.1126/science.1194694 PubMedCrossRefGoogle Scholar
  2. Anderson DL, House P, Hyman RE, Steiner R, Hawkins HR, Thorn S, Rey MJ, Espinal MR, Marineros LE (2010) Rediscovery of the Honduran Emerald Amazilia luciae in western Honduras: insights on the distribution, ecology, and conservation of a ‘critically endangered’ hummingbird. Bird Conserv Int 20:255–262. doi:10.1017/s0959270910000389 CrossRefGoogle Scholar
  3. Arizmendi M, Monterrubio-Solis C, Juarez L, Flores-Moreno I, Lopez-Saut E (2007) Effect of the presence of nectar feeders on the breeding success of Salvia mexicana and Salvia fulgens in a suburban park near Mexico City. Biol Conserv 136:155–158. doi:10.1016/j.biocon.2006.11.016 CrossRefGoogle Scholar
  4. Asghar M, Hasselquist D, Bensch S (2011) Are chronic avian haemosporidian infections costly in wild birds? J Avian Biol 42:530–537. doi:10.1111/j.1600-048X.2011.05281.x CrossRefGoogle Scholar
  5. Atyeo WT, Braasch NL (1966) The feather mite genus Proctophyllodes (Sarcoptiformes): Proctophyllodidae. Univ Nebr State Mus Bull 5:1–351Google Scholar
  6. Barbosa A, Palacios MJ (2009) Health of Antarctic birds: a review of their parasites, pathogens and diseases. Polar Biol 32:1095–1115. doi:10.1007/s00300-009-0640-3 CrossRefGoogle Scholar
  7. Beaucournu JC, Gonzalez-Acuna D (2010) Description of Trochilopsylla torresmurai n. gen., n. sp. (Siphonaptera: Ceratophyllidae) from Chile, the first flea known to parasitize a hummingbird (Aves: Trochilidae). Parasite 17:133–142PubMedCrossRefGoogle Scholar
  8. Bennett GF, Borrero HJI (1976) Blood parasites of some birds from Colombia. J Wildl Dis 12:454–458PubMedCrossRefGoogle Scholar
  9. Benskin CMH, Wilson K, Jones K, Hartley IR (2009) Bacterial pathogens in wild birds: a review of the frequency and effects of infection. Biol Rev 84:349–373. doi:10.1111/j.1469-185X.2008.00076.x PubMedCrossRefGoogle Scholar
  10. Bernard KA, Maffei JG, Jones SA, Kauffman EB, Ebel GD, Dupuis AP, Ngo KA, Nicholas DC, Young DM, Shi PY, Kulasekera VL, Eidson M, White DJ, Stone WB, Kramer LD (2001) West Nile virus infection in birds and mosquitoes, New York State, 2000. Emerg Infect Dis 7:679–685PubMedGoogle Scholar
  11. Bleitz D (1957) Treatment of foot pox at a feeding and trapping station. Auk 75:474–475CrossRefGoogle Scholar
  12. Bleiweiss R (1998) Origin of hummingbird faunas. Biol J Linn Soc 65:77–97. doi:10.1111/j.1095-8312.1998.tb00352.x CrossRefGoogle Scholar
  13. Bochkov AV, Literak I (2011) Mites of the genus Neharpyrhynchus fain (Acariformes, Harpirhynchidae) from Neotropical birds. Zookeys 89:15–31CrossRefGoogle Scholar
  14. Brittingham MC, Temple SA, Duncan RM (1988) A survey of the prevalence of selected bacteria in wild birds. J Wildl Dis 24:299–307PubMedCrossRefGoogle Scholar
  15. Burton RS, Reichman OJ (1999) Does immune challenge effect torpor duration? Funct Ecol 13:232–237. doi:10.1046/j.1365-2435.1999.00302.x CrossRefGoogle Scholar
  16. Buskirk W (1976) Social systems in a tropical forest avifauna. Am Nat 110:293–310. doi:10.1086/283065 CrossRefGoogle Scholar
  17. California Department of Public Health (CDPH) (2012) Species of Dead Birds Positive for WNV in California. Accessed June 2012
  18. Carriker MAJ (1960) Studies in neotropical Mallophaga, XVII: a new family (Trochiliphagidae) and a new genus (Trochiliphagus) of the lice of the hummingbirds (Trochilidae). US Natl Mus 102:307–342CrossRefGoogle Scholar
  19. Cassaigne I, Medellin R, Guasco O, Jose A (2010) Mortality during epizootics in bighorn sheep: effects of initial population size and cause. J Wildl Dis 46:763–771PubMedCrossRefGoogle Scholar
  20. Center for Disease Control and Prevention (CDC) (2011) West Nile virus vertebrate ecology: bird species. Accessed June 2012
  21. Cleaveland S, Hess G, Dobson A, Laurenson M, McCallum H, Roberts M, Woodroffe R (2002) The role of pathogens in biological conservation. In: Hudson P, Rizzolo A, Greenfell B, Haesterbeek H, Dobson A (eds) The ecology of wildlife diseases. University Press, Oxford, pp 139–150Google Scholar
  22. Clifford CM, Sonenshine DE, Atwood EL, Robbins CS, Hughes LE (1969) Tests on ticks from wild birds collected in the Eastern U.S for rickettsiae and viruses. Am J Trop Med Hyg 18:1057–1061PubMedGoogle Scholar
  23. Coatney RG, West E (1938) Some blood parasites from Nebraska birds II. Am Midl Nat 19:601–612CrossRefGoogle Scholar
  24. Cohn M, Langman RE (1990) The protection: the unit of humoral immunity selected by evolution. Immunol Rev 115:7–142CrossRefGoogle Scholar
  25. Colwell RK (1979) The geographical ecology of hummingbird flower mites in relation to their host plants and carriers. In: Rodriguez JG (ed) Recent advances in acarology. Academic Press, New York, pp 461–468CrossRefGoogle Scholar
  26. Colwell RR (2011) Leg injuries observed in banded female Anna’s Hummingbird (Calypte anna) in Central California. N Am Bird Bander 36:57–64Google Scholar
  27. Cooper J, Crawford RJM, De Villiers MS, Dyer BM, Hofmeyr GJG, Jonker A (2009) Disease outbreak among penguins at sub-Antarctic Marion Island: a conservation concern. Mar Ornithol 37:193–196Google Scholar
  28. Crosbie SP, Koenig WD, Reisen WK, Kramer VL, Marcus L, Carney R, Pandolfino E, Bolen GM, Crosbie LR, Bell DA, Ernest HB (2008) Early impact of West Nile virus on the Yellow-billed Magpie (Pica nuttalli). Auk J Am Ornithol Union 125:542–550Google Scholar
  29. Dalgleish R, Price R (2003) Two new species of Myrsidea (Phthiraptera: Amblycera: Menoponidae) from hummingbirds (Apodiformes: Trochilidae). Occasional Papers, Western Foundation Vert Zoo, p l6Google Scholar
  30. Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife. Threats to biodiversity and human health. Science 287:443–449PubMedCrossRefGoogle Scholar
  31. De La Luz Zamudio M (1985) Phoretic mites mesostigmata Ascidae of the nasal cavities of hummingbirds of Mexico 1. Folia Entomol Mex 64:81–92Google Scholar
  32. de Teixeira FJF (1967) A new spirurid Nematoda, parasite of hummingbirds (Passeriformes, Trochilidae). Atas Soc Biol Rio Janeiro 11:1–5Google Scholar
  33. Dhondt AA, Tessaglia DL, Slothower RL (1998) Epidemic mycoplasmal conjunctivitis in house finches from eastern North America. J Wildl Dis 34:265–280PubMedCrossRefGoogle Scholar
  34. Dhondt AA, Altizer S, Cooch EG, Davis AK, Dobson A, Driscoll MJL, Hartup BK, Hawley DM, Hochachka WM, Hosseini PR, Jennelle CS, Kollias GV, Ley DH, Swarthout ECH, Sydenstricker KV (2005) Dynamics of a novel pathogen in an avian host: mycoplasmal conjunctivitis in house finches. Acta Trop 94:77–93. doi:10.1016/j.actatropica.2005.01.009 PubMedCrossRefGoogle Scholar
  35. Dickerman RW, Scherer WF, Moorhouse AS, Toaz E, Essex ME, Steele RE (1972) Ecologic studies of Venezuelan Encephalitis virus in Southeastern Mexico VI. Infection of wild birds. Am J Trop Med Hyg 21:66–78PubMedGoogle Scholar
  36. Dusbabek F, Literak I (2006) Lasioseius aquilarum N. sp (Acari: Ascidae) from the nares of Costa Rican hummingbirds (Trochilidae). Int J Acarol 32:293–296CrossRefGoogle Scholar
  37. Dusbabek F, Literak I, Capek M, Havlicek M (2006) Three species of the genus Pellonyssus (Acari: Macronyssidae) including a new species from Costa Rican birds. Int J Acarol 32:175–178CrossRefGoogle Scholar
  38. Estades CF, Aguirre J, Escobar MAH, Tomasevic JA, Vukasovic MA, Tala C (2007) Conservation status of the Chilean Woodstar Eulidia yarrellii. Bird Conserv Int 17:163–175. doi:10.1017/s0959270907000676 CrossRefGoogle Scholar
  39. Fain A (1992) Notes on the flower mites of the genus Rhinoseius Baker and Yunker, 1964 (Acari: Ascidae), phoretic in the nares of hummingbirds with a key to the known species. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique Entomologie 62:117–136Google Scholar
  40. Foley J, Clifford D, Castle K, Cryan P, Ostfeld R (2011) Investigating and managing the rapid emergence of white-nose syndrome, a novel, fatal, infectious disease of hibernating bats. Conserv Biol 25:223–231. doi:10.1111/j.1523-1739.2010.01638.x PubMedGoogle Scholar
  41. Frederick H, Dierenfeld E, Irlbeck N, Dial S (2003) Analysis of nectar replacement products and a case of iron toxicosis in hummingbirds. In: Proceeding of the conference of the nutrition advisory group (NAG). American Zoo and Aquarium Association (AZA) on Zoo and Wildlife Nutrition, pp 38–43Google Scholar
  42. Friend M, McLean RG, Dein FJ (2001) Disease emergence in birds: challenges for the twenty-first century. Auk 118:290–303. doi:10.1642/0004-8038(2001)118[0290:DEIBCF]2.0.CO;2Google Scholar
  43. Fuhrmann O (1932) Les ténias des oiseaux, avec 147 figures dans le texte. Neuchâtel: Secrétariat de l’Université. Neuchâtel, SwitzerlandGoogle Scholar
  44. Galindo P, Sousa O (1968) Blood parasites of birds from Almirante, Panama, with ecological notes on the hosts. Rev Biol Trop 14:27–46Google Scholar
  45. Godoy LA, Dalbeck LS, Tell LA, Woods LW, Colwell RR, Robinson B, Wethington SM, Moresco A, Woolcock PR, Ernest HB (2013) Characterization of avian poxvirus in Anna’s Hummingbird (Calypte anna) in California. J Wildl Dis (in press)Google Scholar
  46. Goldstein T, Mazet JAK, Gill VA, Doroff AM, Burek KA, Hammond JA (2009) Phocine distemper virus in Northern sea otters in the Pacific Ocean, Alaska, U.S. J Emerg Infect Dis 15:925–927. doi:10.3201/eid1506.090056 CrossRefGoogle Scholar
  47. Gonzalez-Acuna D, Silva C, Soto M, Sergei M, Moreno L, Gonzales-Gomez P, Badrul H, Kinsella M (2011) Parasites of the Green-backed Firecrown (Sephanoides sephanoides) in Chile. Rev Mex Biodivers 82:1333–1336Google Scholar
  48. Griner LA (1983) Orden Apodiformes. In: Pathology of zoo animals: a review of necropsies conducted over a fourteen-year period at the San Diego Zoo and San Diego Wild Animal Park, Zoological Society of San Diego, San Diego, CA, pp 235–238Google Scholar
  49. Hainsworth FR (1981) Energy regulation in Hummingbirds: the study of caloric cost and benefits indicates how hummingbirds control energy resources. Am Sci 69:420PubMedGoogle Scholar
  50. Hall AJ, Saito EK (2008) Avian wildlife mortality events due to salmonellosis in the United States, 1985–2004. J Wildl Dis 44:585–593PubMedCrossRefGoogle Scholar
  51. Hamerton AE (1934) Report on deaths occurring in the Society’s Gardens during the year 1933. Proc Zool Soc Lond 104:389–422. doi:10.1111/j.1469-7998.1934.tb07760.x CrossRefGoogle Scholar
  52. Hamerton AE (1935) Report on the deaths occurring in the Society’s Gardens during the year 1934. Proc Zool Soc Lond 443–474Google Scholar
  53. Hartup BK, Mohammed HO, Kollias GV, Dhondt AA (1998) Risk factors associated with mycoplasmal conjunctivitis in House Finches. J Wildl Dis 34:281–288PubMedCrossRefGoogle Scholar
  54. Harvey-Clark C (1993) Diagnostic exercise: sudden death in colony-housed rufous Hummingbirds (Selasphorus rufus). Lab Anim Sci 43:494–496PubMedGoogle Scholar
  55. Hilker FM (2010) Population collapse to extinction: the catastrophic combination of parasitism and Allee effect. J Biol Dyn 4:86–101. doi:10.1080/17513750903026429 PubMedCrossRefGoogle Scholar
  56. Hilton B Jr, Miller M (2003) Annual survival and recruitment in a Ruby-throated Hummingbird population, excluding the effect of transient individuals. Condor 105:54–62. doi:10.1650/0010-5422(2003)105[54:ASARIR]2.0.CO;2Google Scholar
  57. Hochachka WM, Dhondt AA (2000) Density-dependent decline of host abundance resulting from a new infectious disease. PNAS 97:5303–5306. doi:10.1073/pnas.080551197 PubMedCrossRefGoogle Scholar
  58. Hunter PE (1972) New Rhinoseius species Mesostigmata Ascidae from Costa Rican hummingbirds. J Ga Entomol Soc 7:26–35Google Scholar
  59. Hyland KE, Fain A, Moorhouse AS (1978) Ascidae associated with the nasal cavities of Mexican birds Acarina Mesostigmata. J N Y Entomol Soc 86:260–267Google Scholar
  60. Ingram K (1986) Hummingbirds and miscellaneous orders. In: Fowler ME (ed) Zoo and wild animal medicine, 2nd edn. W.B. Saunders, Philadelphia, pp 447–456Google Scholar
  61. Kilpatrick AM, LaPointe DA, Atkinson CT, Woodworth BL, Lease JK, Reiter ME, Gross K (2006) Effects of chronic avian malaria (Plasmodium relictum) infection on reproductive success of Hawaii Amakihi (Hemignathus virens). Auk 123:764–774. doi:10.1642/0004-8038(2006)123[764:EOCAMP]2.0.CO;2Google Scholar
  62. Koening W, Marcus L, Thomas WS, Dickinson JL (2007) West Nile virus and California breeding bird declines. EcoHealth 1:18–24. doi:10.1007/s10393-007-0086-4 CrossRefGoogle Scholar
  63. Lara C, Ornelas JF (2002) Effects of nectar theft by flower mites on hummingbird behavior and the reproductive success of their host plant, Moussonia deppeana (Gesneriaceae). Oikos 96:470–480. doi:10.1034/j.1600-0706.2002.960309.x CrossRefGoogle Scholar
  64. Marietto-Goncalves GA, Fernandes TM, Silva RJ, Lopes RS, Andreatti Filho RL (2008) Intestinal protozoan parasites with zoonotic potential in birds. Parasitol Res 103:1237–1240. doi:10.1007/s00436-008-1125-y PubMedCrossRefGoogle Scholar
  65. Martínez-de la Puente J, Merino S, Tomás G, Moreno J, Morales J, Lobato E, García-Fraile S, Belda EJ (2010) The blood parasite Haemoproteus reduces survival in a wild bird: a medication experiment. Biol Lett 23:663–665CrossRefGoogle Scholar
  66. McCallum H, Jones M, Hawkins C, Hamede R, Lachish S, Sinn DL, Beeton N, Lazenby B (2009) Transmission dynamics of Tasmanian devil facial tumor disease may lead to disease-induced extinction. Ecology 90:3379–3392. doi:10.1890/08-1763.1 PubMedCrossRefGoogle Scholar
  67. Merino S, Moreno J, Sanz JJ, Arriero E (2000) Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc R Soc Biol Sci 267:2507–2510CrossRefGoogle Scholar
  68. Merino S, Moreno J, Vasquez RA, Martinez J, Sanchez-Monsalvez I, Estades CF, Ippi S, Sabat P, Rozzi R, McGehee S (2008) Haematozoa in forest birds from southern Chile: latitudinal gradients in prevalence and parasite lineage richness. Austral Ecol 33:329–340CrossRefGoogle Scholar
  69. Meteyer CU, Chin RP, Castro AE, Woods LW, Gentzler RP (1992) An epizootic of chlamydiosis with high mortality in a captive population of Euphonias (Euphonia violacea) and hummingbirds (Amazilia amazilia). J Zoo Wildl Med 23:222–229Google Scholar
  70. Miller T (2007) Ticks feeding on animals committed to wildlife rehabilitation centers and implications for Lyme disease ecology. Senior research seminar of the Environmental Science Group Major, UC BerkeleyGoogle Scholar
  71. Neiland KA (1955) The helminth fauna of Nicaragua I. A new genus and species of cestode (Dilepidinae) from the hummingbird, Phaeochroa cuvierii roberti. J Parasitol 41:495–498CrossRefGoogle Scholar
  72. O’Connor BM, Colwell RK, Naeem S (1991) Flower mites of Trinidad II. The genus Proctolaelaps Acari Ascidae. Great Basin Nat 51:348–376Google Scholar
  73. Ohmer C, Fain A, Schuchmann KL (1991) New ascid mites of the genera Rhinoseius Baker and Yunker, 1964, and Lasioseius Berlese 1923 (Acari Gamasida Ascidae) associated with hummingbirds or hummingbird-pollinated flowers in Southwestern Colombia. J Nat Hist 25:481–498. doi:10.1080/00222939100770301 CrossRefGoogle Scholar
  74. Oniki Y (1982) A new species of Trochiloecetes (Mallophaga: Ricinidae) from the Saw-billed Hermit, Ramphodon naevius (Dumont) (Apodiformes: Trochilidae). Rev Brasil Biol 42:85–87Google Scholar
  75. Oniki Y (1995) Trochiliphagus austini sp. n. (Mallophaga, Trochiloecetidae) from Amazilia candida (Aves, Trochilidae) of Belize, with biological notes. Iheringia Ser Zool 67–71Google Scholar
  76. Orr KA, Fowler ME (2001) Orden Trochiliformes (hummingbirds). In: Fowler ME (ed) Biology, medicine, and surgery of South America wild Animals. Iowa State University Press, Iowa, pp 174–179Google Scholar
  77. Park CK, Atyeo WT (1971) A new subfamily and genus of feather mites from hummingbirds (Acarina: Protophyllodidae). Fla Entomol 54:221–229CrossRefGoogle Scholar
  78. Park CK, Atyeo WT (1972) A new genus of allodectine feather mites from hummingbirds. J Kansas Entomol Soc 45:327–334Google Scholar
  79. Park CK, Atyeo WT (1973a) The pterodectine feather mites of hummingbirds: the genera Syntomodectes Park and Atyeo and Sclerodectes, new genus. J GA Entomol Soc 8:39–51Google Scholar
  80. Park CK, Atyeo WT (1973b) The pterodectine feather mites of hummingbirds: the genus Toxerodectes Park and Atyeo (the hastifolia group). J GA Entomol Soc 8:221–233Google Scholar
  81. Park CK, Atyeo WT (1974a) The pterodectine feather mites of hummingbirds: the genus Toxerodectes Park and Atyeo (the lecroyae and gladiger group). J GA Entomol Soc 9:18–32Google Scholar
  82. Park CK, Atyeo WT (1974b) The pterodectine feather mites of hummingbirds: the genus Trochilodectes Park and Atyeo. J GA Entomol Soc 9:156–173Google Scholar
  83. Park CK, Atyeo WT (1975) The pterodectine feather mites of hummingbirds the genus Xynonodectes. J GA Entomol Soc 10:128–144Google Scholar
  84. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi:10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  85. Peaker M (1990) Nutritional requirement and diets for hummingbird and sunbirds. Int Zoo Yearb 29:109–118Google Scholar
  86. Poulin R (1995) Phylogeny, ecology and the richness of parasites communities in vertebrates. Ecol Monogr 65:283–302. doi:10.2307/2937061 CrossRefGoogle Scholar
  87. Radovsky FJ (1998) Description of the active stases and distribution of Pellonyssus gorgasi Yunker and Radovsky, 1966 (Acari: Macronyssidae) of hummingbirds, and its apparent use of flowers for host transfer. Int J Acarol 24:99–106CrossRefGoogle Scholar
  88. Radovsky FJ, Estebanes-Gonzalez ML (2001) Macronyssidae in wild bird nests in Mexico, including new synonymies, and the genus Pellonyssus in the New World (Acari: Mesostigmata). Acta Zool Mex 82:19–28Google Scholar
  89. Radwan AI, Lampky JR (1972) Enterobacteriaceae Isolated from Cowbirds (Molothrus ater) and other species of wild birds in Michigan. Avian Dis 16:343–350PubMedCrossRefGoogle Scholar
  90. Reed KD, Meece JK, Henkel JS, Shukla SK (2003) Birds, migration and emerging zoonoses: west Nile virus, Lyme disease, influenza A and enteropathogens. JCMR 1:5–12Google Scholar
  91. Reisen W, Lothrop H, Chiles R, Madon M, Cossen C, Woods L, Husted S, Kramer V, Edman J (2004) West Nile virus in California. Emerg Infect Dis 10:1369–1378PubMedCrossRefGoogle Scholar
  92. Reisen WK, Wheeler SS, Garcia S, Fang Y (2010) Migratory birds and the dispersal of arboviruses in California. Am J Trop Med Hyg 83:808–815. doi:10.4269/ajtmh.2010.10-0200 PubMedCrossRefGoogle Scholar
  93. Robb GN, McDonald RA, Chamberlain DE, Bearhop S (2008) Food for thought: supplementary feeding as a driver of ecological change in avian populations. Front Ecol Environ 6(9):476–484. doi:10.1890/060152 CrossRefGoogle Scholar
  94. Robinson RA, Lawson B, Toms MP, Peck KM, Kirkwood JK, Chantrey J, Clatworthy IR, Evans AD, Hughes LA, Hutchinson OC, John SK, Pennycott TW, Perkins MW, Rowley PS, Simpson VR, Tyler KM, Cunningham AA (2010) Emerging infectious disease leads to rapid population declines of common British birds. PLoS ONE 5:e12215. doi:10.1371/journal.pone.0012215 PubMedCentralPubMedCrossRefGoogle Scholar
  95. Roda S, Farias A (2007) Acaros plumicolas em beija-flores no municipio de Vicencia. Pernambuco, Brasil. Lundiana 8:13–16Google Scholar
  96. Saidenberg ABS, Teixeira RHF, Astolfi-Ferreira CS, Knobl T, Piantino Ferreira AJ (2007) Serratia marcescens infection in a Swallow-tailed Hummingbird. J Wildl Dis 43:107–110PubMedCrossRefGoogle Scholar
  97. Schloegel LA, Hero JM, Berger L, Speare R, McDonald K, Daszak P (2006) The decline of the Sharp-snouted day frog (Taudactylus acutirostris): the first documented case of extinction by infection in a free-ranging wildlife species? EcoHealth 3:122. doi:10.1007/s10393-005-0012-6 CrossRefGoogle Scholar
  98. Schmidt GD, Dailey MD (1992) Amazilolepis trinidadensis gen. n., sp. n. (Cestoidea: Hymenolepididae) from the Copper-rumped Hummingbird (Amazilia tobaci) in Trinidad, West Indies. J Helm Soc Wash 59:117–119Google Scholar
  99. Shih HI, Lee HC, Lee NY, Chang CM, Wu CJ, Wang LR, Ko NY, Ko WC (2005) Serratia marcescens bacteremia at a medical center in southern Taiwan: high prevalence of cefotaxime resistance. J Microbiol Immunol Infect 38:350–357PubMedGoogle Scholar
  100. Snowden K, Daft B, Nordhausen RW (2001) Morphological and molecular characterization of Encephalitozoon hellem in hummingbirds. Avian Pathol 30:251–255PubMedCrossRefGoogle Scholar
  101. Sousa OE, Herman CM (1982) Blood parasites of birds from Chiriqui and Panama provinces in Panama. J Wildl Dis 18:205–222PubMedCrossRefGoogle Scholar
  102. Spassky AA (2003) Arostellininae, subfam. n., a new subfamily of dilepidid cestodes. Acta Zool Lit 13:327–329CrossRefGoogle Scholar
  103. Takekawa JY, Prosser DJ, Newman SH, Bin Muzaffar S, Hill NJ, Yan B, Xiao X, Lei F, Li T, Schwarzbach SE, Howell JA (2010) Victims and vectors: highly pathogenic avian influenza H5N1 and the ecology of wild birds. Avian Biol Res 3:51–73. doi:10.3184/175815510x12737339356701 CrossRefGoogle Scholar
  104. Valkiunas G, Iezhova TA, Brooks DR, Hanelt B, Brant SV, Sutherlin ME, Causey D (2004) Additional observations on blood parasites of birds in Costa Rica. J Wildl Dis 40:555–561PubMedCrossRefGoogle Scholar
  105. Van Riper CI, Van Riper SG, Goff ML, Laird M (1986) The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol Monogr 56:327–344. doi:10.2307/1942550 CrossRefGoogle Scholar
  106. Van Riper CI, Van Riper SG, Hansen WR (2002) Epizootiology and effect of avian pox on Hawaiian forest birds. Auk 119:929–942. doi:10.1642/0004-8038(2002)119[0929:EAEOAP]2.0.CO;2Google Scholar
  107. Wadsworth PF, Jones DM, Pugsley SL (1984) Fatty liver in birds at the zoological society of London UK. Avian Pathol 13:231–240PubMedCrossRefGoogle Scholar
  108. Weathers WW, Stiles FG (1989) Energetics and water balance in free-living tropical hummingbirds. Condor 91:324–331. doi:10.2307/1368310 CrossRefGoogle Scholar
  109. Wethington S, Finley N (2009) Addressing hummingbirds conservation needs: an initial assessment. In: Rich TD, Aritzmendi C, Demarest DW, Thompson C (eds) Proceeding of the fourth international partners in flight conference: tundra to tropic; connecting birds, habitats and people, McAllen, TX, 13–16 February 2008, pp 662–666Google Scholar
  110. Wheeler SS, Barker CM, Fang Y, Armijos VM, Carroll BD, Husted S, Johnson WO, Reisen WK (2009) Differential impact of West Nile virus on California birds. Condor 111:1–20. doi:10.1525/cond.2009.080013 PubMedCentralPubMedCrossRefGoogle Scholar
  111. White EM, Bennett GF, Williams NA (1979) Avian Haemoproteidae part 11. The haemoproteids of the hummingbird family Trochilidae. Can J Zool 57:908–913CrossRefGoogle Scholar
  112. Williams NA (1978) Hematozoa of wild birds from British Columbia. J Parasitol 64:556–558CrossRefGoogle Scholar
  113. Withgott J (1999) Pollination migrates to top of conservation agenda: a collaborative effort on migratory pollinators aims to increase research, education, and conservation efforts. Bioscience 49:857–862. doi:10.2307/1313643 CrossRefGoogle Scholar
  114. Work TM, Klavitter JL, Reynolds MH, Blehert D (2010) Avian botulism: a case study in translocated endangered Laysan Ducks (Anas laysanensis) on Midway Atoll. J Wildl Dis 46:499–506PubMedCrossRefGoogle Scholar
  115. Zamparo D, Brooks DR, Causey D (2003) Whallwachsia illuminata n. gen., n. sp. (Trematoda: Digenea: Plagiorchiformes: Prosthogonimidae) in the steely-vented hummingbird Amazilia saucerrottei (Aves: Apodiformes: Trochilidae) and the yellow-olive flycatcher Tolmomyias sulphurescens (Aves: Passeriformes: Tyrannidae) from the Area de Conservacion Guanacaste, Guanacaste, Costa Rica. J Parasitol 89:814–818PubMedCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2013

Authors and Affiliations

  • Loreto A. Godoy
    • 1
  • Lisa A. Tell
    • 2
  • Holly B. Ernest
    • 1
    • 3
  1. 1.Wildlife and Ecology Unit, Veterinary Genetics Laboratory, 1009 VM3B, School of Veterinary MedicineUniversity of California, DavisDavisUSA
  2. 2.Department of Medicine and Epidemiology, School of Veterinary MedicineUniversity of California, DavisDavisUSA
  3. 3.Department of Population Health and Reproduction, School of Veterinary MedicineUniversity of California, DavisDavisUSA

Personalised recommendations