Journal of Ornithology

, Volume 154, Issue 4, pp 1105–1113 | Cite as

Multilocus test of the absence of mtDNA phylogeographic structure in a widespread wader, the Common Sandpiper (Actitis hypoleucos)

  • Chih-Ming Hung
  • Sergei V. Drovetski
  • Robert M. Zink
Original Article

Abstract

Although geographically structured mitochondrial DNA (mtDNA) trees often present straightforward evidence for independently evolving lineages, unstructured mtDNA trees are often interpreted as inconclusive or even misleading inferences of phylogeographic history. Some authors believe that stochastic coalescent processes or natural selection can result in mtDNA-based gene trees that fail to capture existing geographic structure. In this study, we sequenced four introns and one exon to test a published mtDNA tree that showed a lack of phylogeographic structure in the Common Sandpiper (Actitis hypoleucos). Neither individual nuclear gene trees nor analyses based on the five genes combined showed geographic structure in this widespread Palearctic wader. Multilocus neutrality tests suggested that the unstructured mtDNA tree was not biased by natural selection although the variation pattern at the exon, Mc1r, was not neutral. Coalescence-based analyses showed that this species experienced a recent population expansion, which could explain the lack of population structure. Overall, the mtDNA results were consistent with those based on nuclear loci in suggesting a lack of strong population structure and a recent population increase. However, multiple genes are needed to quantify demographic history such as timing and extent of effective population size change.

Keywords

Nuclear gene mtDNA Phylogeography Common Sandpiper Coalescence 

Zusammenfassung

Ein Multilocus-Test auf das Fehlen einer phylogeografischen Strukturierung der mtDNA beim Flussuferläufer Actitis hypoleucos, einer weitverbreiteten Watvogelart

Obwohl geografisch strukturierte Stammbäume auf der Basis von mitochondrialer DNA (mtDNA) häufig klare Belege für sich unabhängig entwickelnde Stammeslinien liefern, werden unstrukturierte mtDNA-Stammbäume oft als uneindeutige oder sogar irreführende Rückschlüsse auf die phylogeografische Geschichte angesehen. Manche Autoren sind der Ansicht, dass stochastische Durchmischungsprozesse oder natürliche Selektion zu mtDNA-basierten Stammbäumen führen können, welche die bestehende geografische Strukturierung nicht richtig abbilden. Für diese Studie sequenzierten wir vier Introns und ein Exon, um einen mtDNA-Stammbaum aus der Literatur zu überprüfen, der auf das Fehlen einer geografischen Strukturierung beim Flussuferläufer Actitis hypoleucos deutete. Weder Stammbäume auf der Basis einzelner Kerngene noch kombinierte Analysen der fünf Gene zeigten eine geografische Strukturierung dieser weitverbreiteten paläarktischen Watvogelart. Tests auf Multilocus-Neutralität deuteten darauf hin, dass der unstrukturierte mtDNA-Stammbaum nicht durch natürliche Selektion verzerrt wurde, obgleich das Variationsmuster des Exons Mc1r sich nicht neutral verhielt. Durchmischungsbasierte Analysen zeigten, dass diese Art in jüngerer Zeit eine Populationsausweitung zu verzeichnen hatte, welche die mangelnde Populationsstrukturierung erklären könnte. Insgesamt deckten sich die anhand der mt-DNA gewonnen Ergebnisse mit denen auf der Grundlage nukleärer Loci und wiesen auf das Fehlen einer deutlichen Populationsstrukturierung und auf einen kürzlich erfolgten Populationsanstieg hin. Allerdings bedarf es der Analyse mehrerer Gene, um historische demografische Ereignisse wie zum Beispiel Zeitpunkt und Ausmaß effektiver Änderungen der Populationsgröße zu quantifizieren.

Supplementary material

10336_2013_980_MOESM1_ESM.docx (273 kb)
Supplementary material 1 (DOCX 272 kb)
10336_2013_980_MOESM2_ESM.docx (246 kb)
Supplementary material 2 (DOCX 272 kb)
10336_2013_980_MOESM3_ESM.docx (65 kb)
Supplementary material 3 (DOCX 246 kb)

References

  1. Arbogast BS, Drovetski SV, Curry RL, Boag PT, Seutin G, Grant PR, Grant BR, Anderson DJ (2006) The origin and diversification of Galapagos mockingbirds. Evolution 60:370–382PubMedGoogle Scholar
  2. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  3. Backström N, Fagergerg S, Ellegren H (2008) Genomics of natural bird populations: a gene-based set of reference markers evenly spread across the avian genome. Mol Ecol 17:964–980PubMedCrossRefGoogle Scholar
  4. Baker AM, Mather PB, Hughes JM (2001) Evidence for long-distance dispersal in a sedentary passerine, Gymnorhina tibicen (Artamidae). Biol J Linn Soc 72:333–343CrossRefGoogle Scholar
  5. Ballard JW, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744PubMedCrossRefGoogle Scholar
  6. Bazin E, Glemin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312:570–572PubMedCrossRefGoogle Scholar
  7. Beheregaray LB (2008) Twenty years of phylogeography: the state of the field and the challenges for the southern hemisphere. Mol Ecol 17:3754–3774PubMedGoogle Scholar
  8. Brito PH, Edwards SV (2009) Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica 135:439–455PubMedCrossRefGoogle Scholar
  9. Buehler DM, Baker AJ (2005) Population divergence times and historical demography in red knots and dunlins. Condor 107:497–513CrossRefGoogle Scholar
  10. Cheviron ZA, Brumfield RT (2009) Migration-selection balance and local adaptation of mitochondrial haplotypes in rufous-collared sparrows (Zonotrichia capensis) along an elevational gradient. Evolution 63:1593–1605PubMedCrossRefGoogle Scholar
  11. Cheviron ZA, Hackett SJ, Brumfield RT (2006) Sequence variation in the coding region of the melanocortin-1 receptor gene (MC1R) is not associated with plumage variation in the blue-crowned manakin (Lepidothrix coronate). Proc R Soc Lond B 273:1613–1618CrossRefGoogle Scholar
  12. Clark AG (1990) Inference of haplotypes from PCR-amplified samples of diploid populations. Mol Biol Evol 7:111–122PubMedGoogle Scholar
  13. Dick CW, Roubik DW, Gruber KF, Bermingham E (2004) Long-distance gene flow and cross-Andean dispersal of lowland rainforest bees (Apidae:Euglossini) revealed by compararive mitochondrial DNA phylogeography. Mol Ecol 13:3775–3785PubMedCrossRefGoogle Scholar
  14. Ditchfield AD (2003) The comparative phylogeography of Neotrapical mammals: patterns of intraspecific mitochondrial DNA variation among bats contrasted to nonvolant small mammals. Mol Ecol 9:1307–1318CrossRefGoogle Scholar
  15. Dobson AE, Schmidt DJ, Hughes JM (2012) Sequence variation in the melanocortin-1 receptor (MC1R) does not explain continent-wide plumage color differences in the Australian magpie (Cracticus tibicen). J Heredity 103:769–780CrossRefGoogle Scholar
  16. Dolman G, Moritz C (2006) A multilocus perspective on refugial isolation and divergence in rainforest skinks (Carlia). Evolution 60:573–582PubMedGoogle Scholar
  17. Edwards S, Bensch S (2009) Looking forwards or looking backwards in avian phylogeography? a comment on Zink and Barrowclough 2008. Mol Ecol 18:2930–2933PubMedCrossRefGoogle Scholar
  18. Evanno G, Regaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTUER: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  19. Exoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under linux and windows. Mol Ecol Resour 10:564–567CrossRefGoogle Scholar
  20. Funk DJ, Omland K (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34:397–423CrossRefGoogle Scholar
  21. Galtier N, Nabholz B, Glémin S, Hurst GDD (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 18:4541–4550PubMedCrossRefGoogle Scholar
  22. Hammond EL, Lymbery AJ, Martin GB, Groth D, Wetherall JD (2002) Microsatellite analysis of genetic diversity in wild and farmed emus (Dromaius novaehollandiae). Heredity 93:376–380CrossRefGoogle Scholar
  23. Heled J, Drummond AJ (2008) Bayesian inference of population size history from multiple loci. BMC Evol Biol. doi:10.1186/1471-2148-8-289 PubMedGoogle Scholar
  24. Hewitt GM (2004) Genetic consequences of climatic oscillations in the quaternary. Philos Trans R Soc Lond B 359:183–195CrossRefGoogle Scholar
  25. Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP (2006) A single amino acid mutation contributes to adaptive beach mouse. Science 313:101–104PubMedCrossRefGoogle Scholar
  26. Höglund J, Johansson T, Beintema A, Schekkerman H (2009) Phylogeography of the black-tailed godwit Limosa limosa: substructuring revealed by mtDNA control region sequences. J Ornithol 150:45–53CrossRefGoogle Scholar
  27. Holland PK, Yalden DW (1991) Population dynamics of common sandpipers Actitis hypoleucos breeding along an upland river system. Bird Study 38:151–159CrossRefGoogle Scholar
  28. Holland PK, Yalden DW (1994) An estimate of lifetime reproductive success for the common sandpiper Actitis hypoleucos. Bird Study 41:110–119Google Scholar
  29. Hudson RR, Kreitman M, Aguadé M (1987) A test of neutral molecular evolution based on nucleotide data. Genetics 116:153–159PubMedGoogle Scholar
  30. Huelsenbeck JP, Andolfatto P (2007) Inference of population structure under a Dirichlet process model. Genetics 175:1787–1802PubMedCrossRefGoogle Scholar
  31. Hung C-M, Drovetski SV, Zink RM (2012) Multilocus coalescence analyses support a mtDNA-based phylogeographic history for a widespread Palearctic passerine bird, Sitta europaea. Evolution 66:2850–2864PubMedCrossRefGoogle Scholar
  32. Hung C-M, Drovetski SV, Zink RM (2013) Recent allopatric divergence and niche evolution in a widespread Palearctic bird, the common rosefinch (Carpodacus erythrinus). Mol Phyl Evol 66:103–111CrossRefGoogle Scholar
  33. Hurst LD (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 18:486–487PubMedCrossRefGoogle Scholar
  34. Hurst GDD, Jiggins FM (2005) Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc R Soc Lond B 272:1525–1534CrossRefGoogle Scholar
  35. Ilves KL, Huang W, Wares JP, Hickerson MJ (2010) Colonization and/or mitochondrial selective sweeps across the north Atlantic intertidal assemblage revealed by multi-taxa approximate Bayesian computation. Mol Ecol 19:4505–4519PubMedCrossRefGoogle Scholar
  36. Jolley KA, Feil EJ, Chan M-S, Maiden MCJ (2001) Sequence type analysis and recombinational test (START). Bioinformatics 17:1230–1231PubMedCrossRefGoogle Scholar
  37. Kimball RT, Braun EL, Barker FK et al (2009) A well-tested set of primers to amplify regions spread across the avian genome. Mol Phyl Evol 50:654–660CrossRefGoogle Scholar
  38. Lande R, Engen S, Sæther BE (2003) Stochastic population dynamics in ecology and conservation. Oxford University Press, OxfordCrossRefGoogle Scholar
  39. Lee J, Edwards SV (2008) Divergence across Australia’s carpentarian barrier: statistical phylogeography of the red-backed fairy wren (Malurus melanocephalus). Evolution 62:3117–3134PubMedCrossRefGoogle Scholar
  40. Lim HC, Sheldon FH (2011) Multilocus analysis of the evolutionary dynamics of rainforest bird populations in southeast Asia. Mol Ecol 20:3414–3438PubMedCrossRefGoogle Scholar
  41. MacDougall-Shackleton EA, Blanchard L, Gibbs HL (2003) Unmelanized plumage patterns in old world leaf warblers do not correspond to sequence variation at the melanocortin-1 receptor locus (MC1R). Mol Biol Evol 20:1675–1681PubMedCrossRefGoogle Scholar
  42. Maddison WP, Knowles LL (2006) Inferring phylogeny despite incomplete lineage sorting. Syst Biol 55:21–30PubMedCrossRefGoogle Scholar
  43. Manthey JD, Klicka J, Spellman GM (2011) Isolation-driven divergence: speciation in a widespread north American songbird (Aves: Certhiidae). Mol Ecol 20:4371–4384PubMedCrossRefGoogle Scholar
  44. Marthinsen G, Wennerberg L, Solheim R, Lifjeld JT (2009) No phylogeographic structure in the circumpolar snowy owl. Conserv Genet 10:923–933CrossRefGoogle Scholar
  45. McKay BD, Zink RM (2010) The causes of mitochondrial DNA gene tree paraphyly in birds. Mol Phyl Evol 54:647–650CrossRefGoogle Scholar
  46. Mundy NJ, Badcock NS, Hart T, Scribner K, Janssen K, Nadeau NJ (2004) Conserved genetic basis of a quantitative plumage trait involved in mate choice. Science 303:1870–1873PubMedCrossRefGoogle Scholar
  47. Muñoz-Furntes V, Cortázar-Chinarro M, Lozano-Jaramillo M, McCracken KG (2013) Stepwise colonization of the andes by ruddy ducks and the evolution of novel β-globin variants. Mol Ecol 22:1231–1249CrossRefGoogle Scholar
  48. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and non-synonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  49. Nielsen R (2005) Molecular signature of natural selection. Annu Rev Genet 39:197–218PubMedCrossRefGoogle Scholar
  50. Ottvall R, Höglund J, Bensch S, Larsson K (2005) Population differentiation in the redshank (Tringa totanus) as revealed by mitochondrial DNA and amplified fragment length polymorphism markers. Conserv Genet 6:321–331CrossRefGoogle Scholar
  51. Pavlova A, Amos JN, Joseph L, et al (2013) Perched at the mito-nuclear crossroads: divergent mitochondrial lineages correlate with environment in the face of ongoing nuclear gene flow in an Australian bird. Evolution. doi:10.1111/evo.12107 (in press)
  52. Peters JL, McCracken KG, Pruett CL et al (2012) A parapatric propensity for breeding precludes the completion of speciation in common teal (Anas crecca, sensu lato). Mol Ecol 21:4563–4577PubMedCrossRefGoogle Scholar
  53. Piersma T (1996) Family charadriidae (plovers) and family scolpacidae (sandpipers, snipes and phalaropes). In: del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world, vol 3: Hoatzin to Auks. Lynx, BarcelonaGoogle Scholar
  54. Polzin T, Daneschmand SV (2003) On Steiner trees and minimum spanning trees in hypergraphs. Oper Res Lett 31:12–20CrossRefGoogle Scholar
  55. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256PubMedCrossRefGoogle Scholar
  56. Primmer CR, Borge T, Lindell J, Sætre G-P (2002) Single-nucleotide polymorphism characterization in species with limited available sequence information: high nucleotide diversity revealed in the avian genome. Mol Ecol 11:603–612PubMedCrossRefGoogle Scholar
  57. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  58. Pruett CL, Winker K (2005) Biological impacts of climatic change on a Beringian endemic: cryptic refugia in the establishment and differentiation of the rock sandpiper (Calidris ptilocnemis). Climatic Change 68:219–240CrossRefGoogle Scholar
  59. Rambaut A, Drummond AJ (2007) Tracer v1.4, Available from http://beast.bio.ed.ac.uk/Tracer
  60. Rheindt FE, Székely T, Edwards SV et al (2011) Conflict between genetic and phenotypic differentiation: the evolutionary history of a ‘lost and rediscovered’ shorebird. PLoS ONE 6:e26995. doi:10.1371/journal.pone.0026995 PubMedCrossRefGoogle Scholar
  61. Rönkä N, Kvist L, Pakenen V-M, Rönkä A, Degtyayev V, Tomkovich P, Tracy D, Koivula K (2012) Phylogeography of the Temminck’s stint (Calidris temminckii): historical vicariance but little present genetic structure in a regionally endangered Palearctic wader. Divers Distrib 18:704–716CrossRefGoogle Scholar
  62. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  63. Rosenblum EB, Römpler H, Schöneberg T, Hoekstra HE (2010) Molecular and functional basis of phenotypic convergence in white lizards at white sands. Proc Natl Acad Sci USA 93:14176–14181Google Scholar
  64. Smith BT, Klicka J (2010) The profound influence of the late pliocene panamanian uplift on the exchange, diversification, and distribution of new world birds. Ecography 33:333–342CrossRefGoogle Scholar
  65. Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76:449–462PubMedCrossRefGoogle Scholar
  66. Stephens M, Smith N, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989PubMedCrossRefGoogle Scholar
  67. Takeuchi S, Suzuki H, Yabuuchi M, Takashi S (1996) A possible involvement of melanocortin 1-receptor in regulating feather color pigmentation in the chicken. Biochim Biophys Acta 1308:164–168PubMedCrossRefGoogle Scholar
  68. Walstrom VW, Klicka J, Spellman GM (2012) Speciation in the white-breasted nuthatch (Sitta carolinensis): a multilocus perspective. Mol Ecol 21:907–920PubMedCrossRefGoogle Scholar
  69. Wenink PW, Baker AJ, Tilanus MGJ (1994) Mitochondrial control-region sequences in two shorebird species, the turnstone and the dunlin, and their utility in population genetic studies. Mol Biol Evol 11:22–31PubMedGoogle Scholar
  70. Wenink PW, Baker AJ, Rosner H-U, Tilanus MGJ (1996) Global mitochondrial DNA phylogeography of Holarctic breeding dunlin (Calidris alpina). Evolution 50:318–330CrossRefGoogle Scholar
  71. Wennerberg L (2001) Genetic variation and migration of waders. Dissertation, Lund University, LundGoogle Scholar
  72. Wennerberg L, Klaassen M, Lindstrom A (2002) Geographical variation and population structure in the white-rumped sandpiper Calidris fuscicollis as shown by morphology, mitochondrial DNA and carbon isotope ratios. Oecologia 131:380–390Google Scholar
  73. Wiens JJ, Kuczyski CA, Stephens PR (2010) Discordant mitochondrial and nuclear gene phylogenies in emydid turtles: implications for speciation and conservation. Biol J Linn Soc 99:445–461CrossRefGoogle Scholar
  74. Wilson RE, Peters JL, McCracken KG (2013) Genetic and phenotypic divergence between low- and high-altitude populations of two recently diverged cinnamon teal subspecies. Evolution 67:170–184PubMedCrossRefGoogle Scholar
  75. Yang Z, Nielsen R (1998) Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J Mol Evol 46:409–418PubMedCrossRefGoogle Scholar
  76. Zhang R, Song G, Yanhua Qu et al (2012) Comparative phylogeography of two widespread magpies: importance of habitat preference and breeding behavior on genetic structure in China. Mol Phyl Evol 65:562–572CrossRefGoogle Scholar
  77. Zink RM, Barrowclough GF (2008) Mitochondrial DNA under siege in avian phylogeography. Mol Ecol 17:2107–2121PubMedCrossRefGoogle Scholar
  78. Zink RM, Pavlova A, Drovetski S, Rohwer S (2008) Mitochondrial phylogeographies of five widespread Eurasian birds. J Ornithol 149:399–413CrossRefGoogle Scholar
  79. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Dissertation, University of Texas, Austin,Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2013

Authors and Affiliations

  • Chih-Ming Hung
    • 1
  • Sergei V. Drovetski
    • 2
  • Robert M. Zink
    • 3
  1. 1.Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
  2. 2.Tromsø University MuseumTromsøNorway
  3. 3.Bell Museum and Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt. PaulUSA

Personalised recommendations