Journal of Ornithology

, Volume 154, Issue 4, pp 1007–1018 | Cite as

Individual quality persists between years: individuals retain body condition from one winter to the next in Teal

  • Matthieu Guillemain
  • Andy J. Green
  • Géraldine Simon
  • Michel Gauthier-Clerc
Original Article

Abstract

Few studies have considered how body condition changes over time in individual birds, and most of these concerned long-lived breeding birds. We used a large database of Common Teal Anas crecca ringed and recaptured while wintering in the Camargue to study inter-annual persistence in wing length and body condition. Winter body condition may be a major determinant of survival during that season, and may further be related to breeding success. Indices of condition were compared for individual Teal between the moments of ringing and of recapture the following winter, analyzing each sex and age class (adult or juvenile) separately. Wing length was highly repeatable between years, though some limited annual variation was also recorded in adult males. Using scaled mass index as an index of body condition, we observed that condition at ringing was the strongest predictor of body condition at recapture for males and juvenile females, although inter- and intra-annual variation was also significant in most cases. The value of the slope for the relationship between individual body condition indices at ringing and recapture did not differ from 1 for males and for adults, whereas, for juvenile females, the slope was significantly greater than 1, indicating that individual differences in condition became more exaggerated over time. When analyses were repeated using crude body mass instead of a condition index, results were generally similar. Birds recaptured the following winter had a greater body condition at ringing that those that were not recaptured, supporting the hypothesis of a link between winter body condition and return probability. Our results demonstrate the importance of a head start in Teal, given persistent effects of obtaining better condition in the first winter, and suggest specific age and sex effects. They also underline the value of condition indices as a long-term predictor of individual quality in birds, even during the non-breeding season and for such a relatively short-lived species.

Keywords

Scaled mass index Inter-annual changes Body size Fitness Inter-annual persistence 

Zusammenfassung

Individuelle Qualität bleibt von Jahr zu Jahr bestehen: Krickenten behalten ihre individuelle Körperkondition von einem Winter zum nächsten bei

Es gibt nur wenige Studien zu zeitlichen Veränderungen der Körperkondition von Vogelindividuen; die meisten von diesen Untersuchungen betreffen zudem langlebige Vogelarten zur Brutzeit. Anhand einer großen Datenmenge von Krickenten Anas crecca, die in ihrem Winterquartier in der Camargue beringt und wiedergefangen wurden, untersuchten wir die Persistenz von Flügellänge und Körperkondition von einem Jahr zum anderen. Die winterliche Körperkondition kann einen Hauptüberlebensfaktor zu dieser Jahreszeit darstellen und darüber hinaus mit dem Bruterfolg zusammenhängen. Es wurden Konditionsindizes für einzelne Krickenten zwischen dem Zeitpunkt der Beringung und dem Wiederfang im darauf folgenden Winter verglichen; dabei wurden Geschlechter und Altersklassen (adult oder juvenil) getrennt analysiert. Die Flügellänge war von einem Jahr zum anderen sehr gut reproduzierbar, obgleich bei den adulten Männchen auch eine gewisse jährliche Variation zu beobachten war. Unter Verwendung des Scaled Mass Index (SMI) als Maß der Körperkondition konnten wir feststellen, dass die Kondition bei der Beringung für Männchen und juvenile Weibchen die besten Voraussagen der Körperkondition beim Wiederfang erlaubte, obwohl die Variation innerhalb und zwischen den Jahren in den meisten Fällen ebenfalls signifikant war. Der Steigungswert für die Beziehung zwischen den individuellen Konditionsindizes bei Beringung und Wiederfang wich bei Männchen und Adulten nicht von 1 ab, für juvenile Weibchen hingegen war die Steigung beträchtlich größer als 1, was darauf hinweist, dass die individuellen Unterschiede in der Kondition im Laufe der Zeit zunahmen. Als die Analysen mit der Rohkörpermasse anstelle eines Konditionsindex wiederholt wurden, waren die Ergebnisse insgesamt ähnlich. Vögel, die im Folgewinter wiedergefangen wurden, hatten bei der Beringung eine bessere Körperkondition als solche, nicht wiedergefangen wurden, was auch die Hypothese eines Zusammenhanges zwischen winterlicher Körperkondition und der Rückkehrwahrscheinlichkeit stützt. Unsere Ergebnisse belegen, wie wichtig ein Konditionsvorsprung für die Krickente in Anbetracht der langfristigen Auswirkungen einer besseren Kondition im ersten Winter ist und deuten auf spezifische Alters- und Geschlechtseinflüsse hin. Außerdem unterstreichen sie den Nutzen von Konditionsindizes zur langfristigen Vorhersage individueller Qualität bei Vögeln, selbst außerhalb der Brutzeit und für solch eine relative kurzlebige Art.

References

  1. Alisauskas RT, Ankney CD (1992) The cost of egg laying and its relationship to nutrient reserves in waterfowl. In: Batt BDJ, Afton AD, Anderson MG, Ankney CD, Johnson DH, Kadlec JA, Krapu GL (eds) Ecology and management of breeding waterfowl. University of Minnesota Press, Minneapolis, pp 30–61Google Scholar
  2. Amat JA, Fraga RM, Arroyo GM (2001) Variations in body condition and egg characteristics of female kentish plovers Charadruis alexanderinus. Ardea 89:293–299Google Scholar
  3. Ankney CD, MacInness CD (1978) Nutrient reserves and reproductive performance of female Lesser Snow Geese. Auk 95:459–471Google Scholar
  4. Anteau MJ, Afton AD (2009) Lipid reserves of Lesser Scaup (Aythya affinis) migrating across a large landscape are consistent with the “spring condition” hypothesis. Auk 126:873–883CrossRefGoogle Scholar
  5. Arnold TW, Green AJ (2007) On the allometric relationship between size and composition of avian eggs: a reassessment. Condor 109:705–714CrossRefGoogle Scholar
  6. Baldassarre GA, Whyte RJ, Bolen EG (1986) Body weight and carcass composition of nonbreeding Green-winged Teal on the Southern high plains of Texas. J Wildl Manag 50:420–426CrossRefGoogle Scholar
  7. Barbraud C, Weimerskirch H (2005) Environmental conditions and breeding experience affect costs of reproduction in Blue Petrels. Ecology 86:682–692CrossRefGoogle Scholar
  8. Bergeron P, Baeta R, Pelletier F, Réale D, Garant D (2011) Individual quality: tautology or biological reality? J Anim Ecol 80:361–364PubMedCrossRefGoogle Scholar
  9. Berthold P, Querner U (1982) Genetic basis of moult, wing length, and body weight in a migratory species, Sylvia atricapilla. Experientia 38:801–802CrossRefGoogle Scholar
  10. Black JM, Prop J, Larsson K (2007) Wild goose dilemmas. Branta, GroningenGoogle Scholar
  11. Blas J, Sergio F, Hiraldo F (2009) Age-related improvement in reproductive performance in a long-lived raptor: a cross-sectional and longitudinal study. Ecography 32:647–657CrossRefGoogle Scholar
  12. Blums P, Clark RG (2004) Correlates of lifetime reproductive success in three species of European ducks. Oecologia 140:61–67PubMedCrossRefGoogle Scholar
  13. Blums P, Clark RG, Mednis A (2002) Patterns of reproductive effort and success in birds: path analyses of long-term data from European ducks. J Anim Ecol 71:280–295CrossRefGoogle Scholar
  14. Blums P, Nichols JD, Hines JE, Lindberg MS, Mednis A (2005) Individual quality, survival variation and patterns of phenotypic selection on body condition and timing of nesting in birds. Oecologia 143:365–376PubMedCrossRefGoogle Scholar
  15. Bókony V, Seress G, Nagy S, Lendvai AZ, Liker A (2012) Multiple indices of body condition reveal no negative effect of urbanization in adult house sparrows. Landsc Urban Plan 104:75–84CrossRefGoogle Scholar
  16. Bowler JM (1996) Feeding strategies of Bewick’s Swans (Cygnus columbianus columbianus) in winter. PhD thesis, University of BristolGoogle Scholar
  17. Cam E, Gimenez O, Alpizar-Jara R, Aubry LM, Authier M, Cooch EG, Koons DN, Link WA, Monnat JY, Nichols JD, Rotella JL, Royle JA, Pradel R (2013) Looking for a needle in a haystack: inference about individual fitness components in a heterogeneous population. Oïkos, in pressGoogle Scholar
  18. Catry P, Ruxton GD, Ratcliffe N, Hamer KC, Furness RW (1999) Short-lived repeatabilities in long-lived great skuas: implications for the study of individual quality. Oïkos 84:473–479Google Scholar
  19. Champagnon J, Guillemain M, Elmberg J, Massez G, Cavallo F, Gauthier-Clerc M (2012) Low survival after release into the wild: assessing “the burden of captivity” on Mallard physiology and behaviour. Eur J Wildl Res 58:255–267CrossRefGoogle Scholar
  20. Chastel O, Weimerskirch H, Jouventin P (1995) Body condition and seabird reproductive performance. A case study of three Petrel species. Ecology 76:2240–2246CrossRefGoogle Scholar
  21. Christe P, Møller AP, Saino N, De Lope F (2000) Genetic and environmental components of phenotypic variation in immune response and body size of a colonial bird, Dellichon urbica (the house martin). Heredity 85:75–83PubMedCrossRefGoogle Scholar
  22. Clark GA Jr (1979) Body weights of birds: a review. Condor 81:193–202CrossRefGoogle Scholar
  23. Conroy MJ, Costanzo GR, Stotts DB (1989) Winter survival of female American Black Ducks on the Atlantic Coast. J Wildl Manag 53:99–109CrossRefGoogle Scholar
  24. Davis BE, Afton AD, Cox RR (2011) Factors affecting winter survival of female mallards in the lower Mississippi alluvial valley. Waterbirds 34:186–194CrossRefGoogle Scholar
  25. De la Hera I, Pérez-Tris J, Telleria JL (2009) Repeatable length and mass but not growth rate of individual feathers between moults in a passerine bird. Acta Ornithol 44:95–99CrossRefGoogle Scholar
  26. Devineau O (2007) Dynamique et gestion des populations exploitées: l’exemple de la sarcelle d’hiver. PhD thesis, Université Montpellier II, FranceGoogle Scholar
  27. Devineau O, Guillemain M, Johnson AR, Lebreton JD (2010) A comparison of green-winged teal Anas crecca survival and harvest between Europe and North America. Wildl Biol 16:12–24CrossRefGoogle Scholar
  28. Ebbinge BS, Spaans B (1995) The importance of body reserves accumulated in spring staging areas in the temperate zone for breeding in Dark-bellied Brent Geese Branta b. bernicla in the high Arctic. J Avian Biol 26:105–113CrossRefGoogle Scholar
  29. Evans ME (1979) Aspects of the life cycle of the Bewick’s Swan, based on recognition of individuals at a wintering site. Bird Study 26:149–162CrossRefGoogle Scholar
  30. Flinks H, Salewski V (2012) Quantifying the effect of feather abrasion on wing and tail lengths measurements. J Ornithol 153:1053–1065CrossRefGoogle Scholar
  31. Fox AD, King R, Watkin J (1992) Seasonal variation in weight, body measurements and condition of free-living Teal. Bird Study 39:53–62CrossRefGoogle Scholar
  32. Freeman S, Jackson WM (1990) Univariate metrics are not adequate to measure avian body size. Auk 107:69–74Google Scholar
  33. Gimenez O, Choquet R (2010) Individual heterogeneity in studies on marked animals using numerical integration: capture-recapture mixed models. Ecology 91:951–957PubMedCrossRefGoogle Scholar
  34. Gladbach A, Gladbach DJ, Quillfeldt P (2010) Seasonal clutch size decline and individual variation in the timing of breeding are related to female body condition in a non-migratory species, the Upland Goose Chloephaga picta leucoptera. J Ornithol 151:817–825CrossRefGoogle Scholar
  35. Goutte A, Angelier F, Chastel CC, Trouve C, Moe B, Bech C, Gabrielsen GW, Chastel O (2010) Stress and the timing of breeding: glucocorticoid-luteinizing hormones relationships in an arctic seabird. Gen Comp Endocrinol 169:108–116PubMedCrossRefGoogle Scholar
  36. Green AJ (2001) Mass/length residuals: measures of body condition or generators of spurious results? Ecology 82:1473–1483CrossRefGoogle Scholar
  37. Green AJ, Figuerola J, King R (2001) Comparing evolutionary and static allometry in the Anatidae. J Ornithol 142:321–334Google Scholar
  38. Green AJ, Georgiev BB, Brochet AL, Gauthier-Clerc M, Fritz H, Guillemain M (2011) Determinants of the prevalence of the cloacal cestode Cloacotaenia megalops in teal wintering in the French Camargue. Eur J Wildl Res 57:275–281CrossRefGoogle Scholar
  39. Guillemain M, Mondain-Monval JY, Johnson AR, Simon G (2005a) Long-term climatic trend and body size variation in Teal (Anas crecca). Wildl Biol 11:81–88CrossRefGoogle Scholar
  40. Guillemain M, Dehorter O, Johnson AR, Simon G (2005b) A test of the wintering strategy hypothesis with teal (Anas crecca) ringed in the Camargue, southern France. J Ornithol 146:184–187CrossRefGoogle Scholar
  41. Guillemain M, Devineau O, Lebreton JD, Mondain-Monval JY, Johnson AR, Simon G (2007a) Lead shot and teal (Anas crecca) in the Camargue, Southern France: effects of embedded and ingested pellets on survival. Biol Conserv 137:567–576CrossRefGoogle Scholar
  42. Guillemain M, Fritz H, Johnson AR, Simon G (2007b) What type of lean ducks do hunters kill? Weakest local ones rather than migrants. Wildl Biol 13:102–107CrossRefGoogle Scholar
  43. Guillemain M, Elmberg J, Arzel C, Johnson AR, Simon G (2008) The income-capital breeding dichotomy revisited: late winter body condition is related to breeding success in an income breeder. Ibis 150:172–176CrossRefGoogle Scholar
  44. Guillemain M, Hearn R, King R, Gauthier-Clerc M, Simon G, Caizergues A (2009) Differential migration of the sexes cannot be explained by the body size hypothesis in Teal. J Ornithol 150:685–689CrossRefGoogle Scholar
  45. Hall KSS, Fransson T (2000) Lesser Whitethroats under time-constraint moult more rapidly and grow shorter wing feathers. J Avian Biol 31:583–587CrossRefGoogle Scholar
  46. Haramis GM, Nichols JD, Pollock KH, Hines JE (1986) The relationship between body mass and survival of wintering Canvasbacks. Auk 103:506–514Google Scholar
  47. Hatch MI, Smith RJ (2010) Repeatability of hematocrits and body mass of Gray Catbirds. J Field Ornithol 81:64–70CrossRefGoogle Scholar
  48. Hauser CE, Cooch EG, Lebreton JD (2006) Control of structured populations by harvest. Ecol Mod 196:462–470CrossRefGoogle Scholar
  49. Hepp GR, Kennamer RA (1993) Effects of age and experience on reproductive performance of wood ducks. Ecology 74:2027–2036CrossRefGoogle Scholar
  50. Hohman WL (1993) Body composition of wintering canvasbacks in Louisiana: dominance and survival implications. Condor 95:377–387CrossRefGoogle Scholar
  51. Johnson DH, Nichols JD, Schwartz MD (1992) Population dynamics of breeding waterfowl. In: Batt BDJ, Afton AD, Anderson MG, Ankney CD, Johnson DH, Kadlec JA, Krapu GL (eds) Ecology and management of breeding waterfowl. University of Minnesota Press, Minneapolis, pp 446–485Google Scholar
  52. Kendall BE, Fox GA (2002) Variation among individuals and reduced demographic stochasticity. Conserv Biol 16:109–116CrossRefGoogle Scholar
  53. Kendall BE, Fox GA (2003) Unstructured individual variation and demographic stochasticity. Conserv Biol 17:1170–1172CrossRefGoogle Scholar
  54. Krapu GL (1981) The role of nutrient reserves in Mallard reproduction. Auk 98:29–38Google Scholar
  55. Labocha MK, Hayes JP (2012) Morphometric indices of body condition in birds: a review. J Ornithol 153:1–22CrossRefGoogle Scholar
  56. Lebreton JD (1973) Etude des déplacements saisonniers des sarcelles d’hiver, Anas c. crecca L., hivernant en Camargue à l’aide de l’analyse factorielle des correspondances. CR Acad Sci D 277:2417–2420Google Scholar
  57. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  58. Lindén M, Gustafsson L, Part T (1992) Selection on fledging mass in the Collared Flycatcher and the Great Tit. Ecology 73:336–343CrossRefGoogle Scholar
  59. Lyons DE, Roby DD (2011) Validating growth and development of a seabird as an indicator of food availability: captive-reared Caspian Tern chicks fed ad libitum and restricted diets. J Field Ornithol 82:88–100CrossRefGoogle Scholar
  60. Madsen T, Shine R (1999) The adjustment of reproductive threshold to prey abundance in a capital breeder. J Anim Ecol 68:571–580CrossRefGoogle Scholar
  61. Mateo R, Belliure J, Dolz JC, Aguilar Serrano JM, Guitart R (1998) High prevalences of lead poisoning in wintering waterfowl in Spain. Arch Environ Contam Toxicol 35:342–347PubMedCrossRefGoogle Scholar
  62. McLandress MR, Raveling DG (1981) Changes in diet and body composition of Canada geese before spring migration. Auk 98:65–79Google Scholar
  63. Milonoff M, Pöysä H, Runko P (2002) Reproductive performance of Common Goldeneye Bucephala clangula females in relation to age and lifespan. Ibis 144:585–592CrossRefGoogle Scholar
  64. Moon JA, Haukos DA (2009) Factors affecting body condition of Northern Pintails wintering in the Playa Lakes region. Waterbirds 32:87–95CrossRefGoogle Scholar
  65. Norte AC, Ramos JA, Sousa JP, Sheldon BC (2009) Variation of adult Great Tit Parus major body condition and blood parameters in relation to sex, age, year and season. J Ornithol 150:651–660CrossRefGoogle Scholar
  66. Nudds RL, Kaiser GW, Dyke GJ (2011) Scaling of avian primary feather length. PLoS ONE 6:e15665PubMedCrossRefGoogle Scholar
  67. Nur N (1984) The consequences of brood size for breeding Blue Tits I. Adult survival, weight change and the cost of reproduction. J Anim Ecol 53:479–496CrossRefGoogle Scholar
  68. O’Hara PD, Fernández G, Haase B, De la Cueva H, Lank DB (2006) Differential migration in western sandpipers with respect to body size and wing length. Condor 108:225–232CrossRefGoogle Scholar
  69. Ormerod SJ, Tyler SJ (1990) Assessments of body condition in Dippers Cinclus cinclus: potential pitfalls in the derivation and use of condition indices based on body proportions. Ring Migr 11:31–41CrossRefGoogle Scholar
  70. Peig J, Green AJ (2009) New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118:1883–1891CrossRefGoogle Scholar
  71. Peig J, Green AJ (2010) The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Funct Ecol 24:1323–1332CrossRefGoogle Scholar
  72. Raveling DG (1981) Survival, experience, and age in relation to breeding success of Canada geese. J Wildl Manag 45:817–829CrossRefGoogle Scholar
  73. Rhodes OEJr, DeVault TL, Smith LM (2006) Seasonal variation in carcass composition of American Wigeon wintering in the Southern High Plains. J Field Ornithol 77:220–228Google Scholar
  74. Ridgill SC, Fox AD (1990) Cold weather movements of waterfowl in Western Europe. International Waterfowl Research Bureau Special publication 13. IWRB, Slimbridge, UKGoogle Scholar
  75. Rising JD, Somers KM (1989) The measurement of overall body size in birds. Auk 106:666–674CrossRefGoogle Scholar
  76. Robert A, Couvet D, Sarrazin F (2002) Fitness heterogeneity and viability of restored populations. Anim Conserv 5:153–161CrossRefGoogle Scholar
  77. Robert A, Sarrazin F, Couvet D (2003) Variation among individuals, demographic stochasticity, and extinction: response to Kendall and Fox. Conserv Biol 17:1166–1169CrossRefGoogle Scholar
  78. Schamber JL, Esler D, Flint PL (2009) Evaluating the validity of using unverified indices of body condition. J Avian Biol 40:49–56CrossRefGoogle Scholar
  79. Stevenson RD, Woods WA (2006) Condition indices for conservation: new uses for evolving tools. Int Comp Biol 46:1169–1190CrossRefGoogle Scholar
  80. Tamisier A, Allouche L, Aubry F, Dehorter O (1995) Wintering strategies and breeding success: hypothesis for a trade-off in some waterfowl species. Wildfowl 46:76–88Google Scholar
  81. Tuljapurkar S, Steiner UK, Orzack SH (2009) Dynamic heterogeneity in life histories. Ecol Lett 12:93–106PubMedCrossRefGoogle Scholar
  82. Voelker G (2001) Morphological correlates of migratory distance and flight display in the avian genus Anthus. Biol J Linn Soc 73:425–435CrossRefGoogle Scholar
  83. Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291PubMedCrossRefGoogle Scholar
  84. Wishart RA (1979) Indices of structural size and condition of American Wigeon (Anas americana). Can J Zool 57:2369–2374CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2013

Authors and Affiliations

  • Matthieu Guillemain
    • 1
  • Andy J. Green
    • 2
  • Géraldine Simon
    • 3
  • Michel Gauthier-Clerc
    • 3
  1. 1.CNERA Avifaune MigratriceOffice National de la Chasse et de la Faune SauvageArlesFrance
  2. 2.Department of Wetland EcologyEstación Biológica de Doñana-CSICSevillaSpain
  3. 3.Centre de Recherche de la Tour du ValatArlesFrance

Personalised recommendations