Journal of Ornithology

, Volume 154, Issue 4, pp 889–900 | Cite as

Phylogeography and genetic diversity of the Robin (Erithacus rubecula) in the Azores Islands: Evidence of a recent colonisation

  • Pedro Rodrigues
  • Ricardo Jorge Lopes
  • Sergei V. Drovetski
  • Sandra Reis
  • Jaime A. Ramos
  • Regina Tristão da Cunha
Original Article

Abstract

We present new insights into the phylogeography of the Robin, Erithacus rubecula, from the seven Azores Islands where it breeds, based on sequences of mitochondrial and nuclear genes from 35 individuals (five from each of the seven islands) as well as outgroup/comparison samples from Madeira, Canary Islands and Continental Western Palearctic (Europe and North Africa). To understand the level of concordance between the genetic data and morphometric variability, eight morphometric characters were analysed for 113 birds for the seven Azores Islands populations. Our results revealed that Robins from the Azores possess low genetic diversity and share their most common haplotype with Madeira and the Continental Western Palearctic Robins, which support the hypothesis of one recent founder event and a fast range expansion to most of the Azores Islands. Nevertheless, despite this lack of neutral genetic differentiation, morphological differences were found among islands, which could be attributed to natural selection processes. The morphological data show that birds from São Miguel had the longest wings and largest body mass, and that birds from Graciosa had the smallest bill length. This recent colonisation could be the reason for the absence of Robins in the westernmost islands of the Azores.

Keywords

Robin Erithacus rubecula Azores Islands Phylogeography Biometrics 

Zusammenfassung

Phylogeographie und genetische Diversität des Rotkehlchens (Erithacus rubecula) auf den Azoren: Hinweise auf eine kürzlich erfolgte Besiedlung

Wir stellen neue Erkenntnisse zur Phylogeographie des Rotkehlchens (Erithacus rubecula) auf den sieben Azoreninseln, auf denen es brütet, vor, die auf den Sequenzen mitochondrialer und nukleärer Gene von 35 Individuen (fünf von jeder Insel) sowie Außengruppen-/Vergleichsproben aus Madeira, den Kanaren und der kontinentalen westlichen Paläarktis (Europa und Nordafrika) basieren. Um das Ausmaß der Übereinstimmung zwischen den genetischen Daten und der morphometrischen Variabilität zu verstehen, haben wir acht morphometrische Merkmale für 113 Vögel aus den sieben Azoreninselpopulationen analysiert. Unsere Ergebnisse zeigten, dass Rotkehlchen von den Azoren eine niedrige genetische Diversität aufweisen und den häufigsten Haplotyp mit den Rotkehlchen aus Madeira und der kontinentalen westlichen Paläarktis teilen, was die Hypothese eines kürzlich erfolgten Besiedlungsereignisses und einer schnellen Ausweitung des Verbreitungsgebiets auf die meisten Azoreninseln stützt. Trotz dieses Mangels an neutraler genetischer Differenzierung wurden morphometrische Unterschiede zwischen den Inseln gefunden, die auf natürliche Selektionsprozesse zurückgeführt werden konnten. Die morphologischen Daten zeigen, dass Vögel aus São Miguel die längsten Flügel sowie die größte Körpermasse und Vögel aus Graciosa die kürzesten Schnäbel aufwiesen. Diese erst kürzlich erfolgte Besiedlung könnte der Grund dafür sein, dass Rotkehlchen auf den westlichsten Azoreninseln fehlen.

Supplementary material

10336_2013_953_MOESM1_ESM.doc (510 kb)
Supplementary material 1 (DOC 510 kb)

References

  1. Arctander P, Folmer O, Fjeldsa J (1996) The phylogenetic relationships of Berthelot’s pipit Anthus berthelotti illustrated by DNA sequence data, with remarks on the genetic distance between Rock and Water pipits Anthus spinoletta. Ibis 138:263–272CrossRefGoogle Scholar
  2. Bannerman DA, Bannerman WN (1966) Birds of the Atlantic Islands. vol. 3: a history of the birds of the Azores. Oliver and Boyd, EdinburghGoogle Scholar
  3. Barton NH, Charlesworth B (1984) Genetic revolutions, founder effects, and speciation. Annu Rev Ecol Sys 15:133–164CrossRefGoogle Scholar
  4. Barton NH, Mallet J (1996) Natural selection and random genetic drift as causes of evolution on islands (and discussion). Phil Trans R Soc B 351:785–795PubMedCrossRefGoogle Scholar
  5. Bergmann H, Schottler B (2001) Tenerife Robin—a species of its own? Dutch Birding 23:140–146Google Scholar
  6. Brown WM, George MJR, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 74:1967–1971CrossRefGoogle Scholar
  7. Clarke T, Orgill C, Disley T (2006) Field guide to the birds of the Atlantic Islands: Canary Islands, Madeira, Azores. Helm Field Guides, Cape VerdeGoogle Scholar
  8. Clegg SM, Phillimore A (2010) The influence of gene flow and drift on genetic and phenotypic divergence in two species of Zosterops in Vanuatu. Phil Trans R Soc B 365:1077–1092PubMedCrossRefGoogle Scholar
  9. Clegg SM, Degnan CM, Estoup A, Kikkawa J, Owens IPF (2002) Microevolution in island forms: the roles of drift and directional selection in morphological divergence of a passerine bird. Evolution 56:2090–2099PubMedGoogle Scholar
  10. Clement M, Posada D, Crandall KA (2000) TCS: a computer programme to estimate gene genealogies. Mol Ecol 9:1657–1660PubMedCrossRefGoogle Scholar
  11. Clements JF (2000) Birds of the World. A checklist. Pica Press, SussexGoogle Scholar
  12. Cramp S (1988) Handbook of the birds of Europe, the Middle East and North Africa. The birds of the Western Palearctic. vol 5: Tyrant flycatchers to thrushes. Oxford University Press, Oxford, UKGoogle Scholar
  13. del Hoyo J, Elliott A, Christie D (2006) Handbook of the birds of the world. Vol. 11: old world Flycatchers to old world warblers. Lynx Editions, Barcelona, SpainGoogle Scholar
  14. Dietzen C, With HH, Wink M (2003) The phylogeographic differentiation of the European Robin Erithacus rubecula on the Canary Islands revealed by mitochondrial DNA sequence data and morphometrics: evidence for a new Robin taxon on Gran Canaria? Avian Sci 3:115–131Google Scholar
  15. Dietzen C, Voigt C, Wink M, Gahr M, Leitner S (2006) Phylogeography of island canary (Serinus canaria) populations. J Ornithol 147:485–494CrossRefGoogle Scholar
  16. Equipa Atlas (2008) Atlas das Aves Nidificantes em Portugal (1999–2005). Instituto da Conservação da Natureza e da Biodiversidade, Sociedade Portuguesa para o Estudo das Aves, Parque Natural da Madeira e Secretaria Regional do Ambiente e do Mar. Assírio & Alvim, Lisboa, PortugalGoogle Scholar
  17. França Z, Cruz JV, Nunes JC, Forjaz VH (2003) Geologia dos Açores: uma perspectiva actual. Açoreana 10:11–140Google Scholar
  18. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedGoogle Scholar
  19. Fu YX, Li WH (1993) Statistical test of neutrality of mutations. Genetics 133:693–709PubMedGoogle Scholar
  20. Grant P, Grant R (2008) How and why species multiply. The radiation of Darwin’s finches. Princeton University Press, New JerseyGoogle Scholar
  21. Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600PubMedGoogle Scholar
  22. Hartert JC, Olgivie-Grant WR (1905) On the birds of the Azores. Novi Zool 12:80–128Google Scholar
  23. Helbig AJ, Martens J, Henning F, Schottler B, Seibold I, Wink M (1996) Phylogeny and species limits in the Palaearctic Chiffchaff Phylloscopus collybita complex: mitochondrial genetic differentiation and bioacoustic evidence. Ibis 138:650–666Google Scholar
  24. Hounsome MC (1993) Biometrics and origins of some Atlantic island birds. Bol Mus Mun Funchal 2:107–129Google Scholar
  25. Illera JC, Koivula K, Broggi J, Päckert M, Martens J, Kvist L (2011) A multi-gene approach reveals a complex evolutionary history in the Cyanistes species group. Mol Ecol 20:4123–4139PubMedCrossRefGoogle Scholar
  26. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  27. Marshall HD, Baker AJ (1999) Colonisation History of Atlantic Island Common Chaffinches (Fringilla coelebs) Revealed by Mitochondrial DNA. Mol Phylogenet Evol 11:201–212PubMedCrossRefGoogle Scholar
  28. Martin A, Lorenzo JA (2001) Aves del Archipélago Canario. Francisco Lemus, Editor SL. La Laguna, TenerifeGoogle Scholar
  29. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  30. Neves VC, Griffiths K, Savory FR, Furness RW, Mable BK (2010) Are European starlings breeding in the Azores archipelago genetically distinct from birds breeding in mainland Europe? Eur J Wild Res 59:95–100CrossRefGoogle Scholar
  31. Päckert M, Martens J (2004) Song dialects on the Atlantic islands: goldcrests of the Azores (Regulus regulus azoricus, R. r. sanctae-mariae, R. r. inermis). J Ornithol 145:23–30CrossRefGoogle Scholar
  32. Päckert M, Dietzen C, Martens J, Wink M, Kvist L (2006) Radiation of Atlantic Goldcrests Regulus regulus spp.: evidence of a new taxon from the Canary Islands. J Avian Biol 37:364–380CrossRefGoogle Scholar
  33. Peck DR, Congdon BC (2004) Reconciling historical biogeography of the Catharus thrushes: a molecular phylogenetic approach. Auk 120:299–310Google Scholar
  34. Pérez-Tris J, Carbonell R, Tellería JL (2000) Abundance distribution, morphological variation and juvenile condition of Robins, Erithacus rubecula (L.), in their Mediterranean range boundary. J Biogeogr 27:879–888CrossRefGoogle Scholar
  35. Petren K, Grant PR, Grant BR, Keller LF (2005) Comparative landscape genetics and the adaptive radiation of Darwin’s finches: the role of peripheral isolation. Mol Ecol 14:2943–2957PubMedCrossRefGoogle Scholar
  36. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality test against population growth. Mol Biol Evol 19:2092–2100PubMedCrossRefGoogle Scholar
  37. Rodrigues P, Bried J, Rodebrand S, Cunha R (2010) AVES. In: Borges PAV, Costa A, Cunha R, Gabriel R, Gonçalves V, Martins AF, Melo I, Parente M, Raposeiro P, Rodrigues P, Santos RS, Silva L, Vieira P, Vieira V (eds) A list of the terrestrial and marine biota from the Azores. Princípia, CascaisGoogle Scholar
  38. Rogers AR (1995) Genetic evidence for a Pleistocene population explosion. Evolution 49:608–615CrossRefGoogle Scholar
  39. Samarasin-Dissanayake P (2010) Population differentiation, historical demography and evolutionary relationships among widespread Common Chaffinch populations (Fringilla coelebs ssp.). Thesis for the degree of Master of Science, University of TorontoGoogle Scholar
  40. Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis. User manual ver 2.000. Genetics and Biometry Laboratory Department of Anthropology, University of Geneva, Geneva, ItalyGoogle Scholar
  41. StatSoft Inc (2007) STATISTICA (data analysis software system), version 8.0. www.statsoft.com
  42. Steeves TE, Anderson DJ, Friesen VL (2005) The isthmus of Panama: a major physical barrier to gene flow in a highly mobile pantropical seabird. J Evol Biol 18:1000–1008PubMedCrossRefGoogle Scholar
  43. Suárez NM, Betancor E, Klassert TE, Almeida T, Hernández M, Pestano JJ (2009) Phylogeography and genetic structure of the Canarian common Chaffinch (Fringilla coelebs) inferred with mtDNA and microsatellite loci. Mol Phylogenet Evol 53:556–564PubMedCrossRefGoogle Scholar
  44. Svensson L (1992) Identification guide to European Passerines. L. Svensson, StockholmGoogle Scholar
  45. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  46. Tajima F (1996) The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites. Genetics 143:1457–1465PubMedGoogle Scholar
  47. Thompson B (1991) Methods, plainly speaking: a primer on the logic and use of canonical correlation analysis. Mes Eval Couns Dev 24:80–93Google Scholar
  48. von Haeseler A, Sajantila A, Paabo S (1996) The genetical archaeology of the human genome. Nat Genet 14:135–140CrossRefGoogle Scholar
  49. Weir JT, Schluter D (2008) Calibrating the avian molecular clock. Mol Ecol 17:2321–2328PubMedCrossRefGoogle Scholar
  50. Wink M, Sauer-Gürth H, Gwinner E (2002) Evolutionary relationships of stonechats and related species inferred from mitochondrial-DNA sequences and genomic fingerprinting. Brit Birds 95:349–355Google Scholar
  51. Wittmann U, Heidrich P, Wink M, Gwinner E (1995) Speciation in the stonechat Saxicola torquata inferred from nucleotide sequences of the cytochrome-b gene. J Zoo Syst Evol Res 33:116–122Google Scholar
  52. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2013

Authors and Affiliations

  • Pedro Rodrigues
    • 1
  • Ricardo Jorge Lopes
    • 2
  • Sergei V. Drovetski
    • 3
  • Sandra Reis
    • 2
  • Jaime A. Ramos
    • 4
  • Regina Tristão da Cunha
    • 1
  1. 1.CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Polo dos AçoresUniversidade dos AçoresPonta DelgadaPortugal
  2. 2.CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, InBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
  3. 3.Tromsø University MuseumTromsöNorway
  4. 4.Institute of Marine Research (IMAR/CMA), Department of Life SciencesUniversity of CoimbraCoimbraPortugal

Personalised recommendations