Skip to main content

Advertisement

Log in

Access to cryptic arthropod larvae supports the atypical winter breeding seasonality of Meyer’s Parrot (Poicephalus meyeri) throughout the African subtropics

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Meyer’s Parrot Poicephalus meyeri has the widest distributional range of any African parrot. There are six subspecies distributed throughout the African subtropics, all of which manage to breed successfully during the winter dry season when few other cavity-nesting birds are actively nesting. In 2004, we recorded Meyer’s Parrots feeding on four cryptic arthropod larvae incubating inside fruits and pods in their seasonal diet. All of these were previously unknown in the diet of African parrots. Nesting females and chicks were fed regurgitate almost exclusively comprising these arthropod larvae for the first 10 weeks after nest occupation. In 2007, we demonstrated that Meyer’s Parrots actively search for these protein-rich arthropod larvae and synchronized their breeding effort within our study area to coincide their hatching period with the period of highest relative abundance of these larvae, resulting in a breeding synchrony index value of 79.3 % between females in the population. In 2009, we recorded the consumption of similar arthropod larvae parasitizing similar tree species in northern Zambia and two locations in Tanzania, thus confirming this behaviour throughout their distributional range. Similar behaviour is expected in their closest congeners, the Brown-headed Parrot P. cryptoxanthus and Rüppell’s Parrot P. rueppellii. Poor land management practices (e.g. deforestation and frequent fires) most likely influence the abundance of these cryptic arthropod larvae and thus the breeding success of Meyer’s Parrot at population level.

Zusammenfassung

Zugang zu versteckten Arthropodenlarven unterstützt die atypische Winterbrutsaison des Goldbugpapageis ( Poicephalus meyeri ) in den afrikanischen Subtropen

Der Goldbugpapagei Poicephalus meyeri weist das größte Verbreitungsgebiet aller afrikanischen Papageien auf. Es gibt sechs über die gesamten afrikanischen Subtropen verbreitete Unterarten, die alle erfolgreich in der winterlichen Trockenzeit brüten, wenn nur wenige andere Höhlenbrüter nisten. Im Jahr 2004 haben wir beobachtet, dass Goldbugpapageien vier Arten versteckter Arthropodenlarven fraßen, die in Früchten und Schoten überwinterten. All diese waren zuvor nicht als Nahrung afrikanischer Papageien bekannt gewesen. In den ersten zehn Wochen nach Beziehen des Nests wurden brütende Weibchen und Küken mit hervorgewürgter Nahrung gefüttert, die fast ausschließlich aus diesen Arthropodenlarven bestand. Im Jahr 2007 zeigten wir, dass Goldbugpapageien aktiv nach diesen proteinreichen Arthropodenlarven suchen und das Schlüpfen der Nestlinge mit der Periode des stärksten Auftretens dieser Larven im Untersuchungsgebiet synchronisierten, was in einem Brutsynchronitätsindex von 79,3 % für die Weibchen der Population resultierte. Im Jahr 2009 zeichneten wir den Verzehr ähnlicher Arthropodenlarven, die ähnliche Baumarten befielen, im Norden Sambias und an zwei Stellen in Tansania auf und bestätigten dieses Verhalten somit im gesamten Verbreitungsgebiet des Goldbugpapageis. Wir erwarten ähnliches Verhalten bei den nächsten Gattungsverwandten, dem Braunkopfpapagei (P. cryptoxanthus) und dem Rüppellpapagei (P. rueppellii). Ungünstige Bodenbearbeitungsmethoden (z.B. Abholzung und häufige Brandrodung) beeinflussen höchstwahrscheinlich die Häufigkeit dieser versteckten Arthropodenlarven und somit den Bruterfolg des Goldbugpapageis auf Populationsebene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aitken KFH, Wiebe KL, Martin K (2002) Nest-site re-use patterns for a cavity-nesting bird community in interior British Columbia. Auk 119(2):391–402

    Article  Google Scholar 

  • Arnot LF, Perrin MR (1999) The effect of diet composition on the reproductive performance of Peach-faced Lovebirds (Agapornis roseicollis). Papageienkunde 3:125–139

    Google Scholar 

  • Banjo AD, Lawal BJ, Songonuga EA (2006) The nutritional value of fourteen species of edible insects in southwestern Nigeria. Afr J Biotechnol 5(3):298–301

    CAS  Google Scholar 

  • Boyes RS (2009) The ecology of Meyer’s Parrot Poicephalus meyeri in the Okavango Delta, Botswana. PhD thesis, University of KwaZulu-Natal, South Africa

  • Boyes RS, Perrin MR (2009a) Generalists, specialists and opportunists: niche metrics of Poicephalus parrots in southern Africa. Ostrich 80:93–97

    Article  Google Scholar 

  • Boyes RS, Perrin MR (2009b) Feeding ecology of Meyer’s Parrot Poicephalus meyeri in the Okavango Delta, Botswana. Ostrich 80:153–164

    Article  Google Scholar 

  • Boyes RS, Perrin MR (2009c) Do Meyer’s Parrots Poicephalus meyeri benefit pollination and seed dispersal of plants in the Okavango Delta, Botswana? Afr J Ecol 48(3):769–782

    Google Scholar 

  • Boyes RS, Perrin MR (2010a) Patterns of daily activity of Meyer’s Parrot Poicephalus meyeri in the Okavango Delta, Botswana. Emu 110:54–65

    Article  Google Scholar 

  • Boyes RS, Perrin MR (2010b) Nest niche dynamics of Meyer’s Parrot Poicephalus meyeri in the Okavango Delta, Botswana. Ostrich 81(3):345–357

    Article  Google Scholar 

  • Boyes RS, Perrin MR (2010c) Aerial surveillance by a generalist seed predator: food resource tracking by Meyer’s Parrot Poicephalus meyeri in the Okavango Delta, Botswana. J Trop Ecol 26:381–392

    Article  Google Scholar 

  • Brightsmith DJ (2005) Competition, predation and nest niche shifts among tropical cavity-nesters: ecological evidence. J Avian Biol 36:74–83

    Article  Google Scholar 

  • Cottam M, Houston D, Lobley G, Hamilton I (2002) The use of muscle protein for egg production in the Zebra Finch Taeniopygia guttata. Ibis 144(2):210–217

    Article  Google Scholar 

  • Derbel S, Noumi Z, Anton KW, Chaieb M (2007) Life cycle of the coleopter Bruchidius raddianae and the seed predation of the Acacia tortilis subsp. raddiana in Tunisia. Anim Biol Pathol 330:49–54

    Google Scholar 

  • Edington JM, Edington MA (1972) Spatial patterns and habitat partition in the breeding birds of an upland wood. J Anim Ecol 41:331–357

    Google Scholar 

  • Ellery WN, McCarthy TS, Smith ND (2003) Vegetation, hydrology and sedimentation patterns on the main distributary system of the Okavango Fan, Botswana. Wetlands 23:357–375

    Article  Google Scholar 

  • Ernst WHO, Decelle JE, Tolsma DJ, Verweij RA (1990) Lifecycle of the bruchid beetle Bruchidius uberatus and its predation of Acacia nilotica seeds in a tree savanna in Botswana. Entomol Exp Appl 57(2):177–190

    Article  Google Scholar 

  • Forshaw JM (1989) Parrots of the world, 3rd revised edn. Willoughby, Lansdowne, Melbourne

  • Fry CH, Keith S, Urban EK (1988) The birds of Africa, vol III. Academic Press, London

  • Gumbricht T, McCarthy TS, Merry CL (2001) The topography of the Okavango Delta, Botswana, and its tectonic and sedimentological implications. S Afr J Geol 104:242–264

    Article  Google Scholar 

  • Hawley SB (1997) Nutritional diets for pet birds. Avizandum 1:12–15

    Google Scholar 

  • Hockey PAR, Dean WRJ, Ryan PG (eds) (2005) Roberts—birds of southern Africa, 7th edn. The Trustees of the John Voelcker Bird Book Fund, Cape Town

    Google Scholar 

  • Houston DC (1997) Nutritional constraints on egg production in birds. Proc Nutr Soc 56:1057–1065

    Article  PubMed  CAS  Google Scholar 

  • Ingold DJ (1994) Influence of nest-site competition between European Starlings and woodpeckers. Wilson Bull 106:227–241

    Google Scholar 

  • Jordan R (2001) Incubation of Psittacine eggs. Semin Avian Exot Pet Med 10(3):112–116

    Article  Google Scholar 

  • Juniper T, Parr M (1998) Parrots—a guide to the parrots of the world. Pica, Sussex

    Google Scholar 

  • Kempenaers B (1993) The use of a breeding synchrony index. Ornis Scand 24:84

    Article  Google Scholar 

  • Komdeur J (1996) Breeding of the Seychelles magpie robin Copsychus sechellarum and its implications for conservation. Ibis 138:485–498

    Google Scholar 

  • Lack D (1967) The natural regulation of animal numbers. Oxford University Press, Oxford

    Google Scholar 

  • Levey DJ (1990) Habitat-dependent fruiting behaviour of an understorey tree, Miconia centrodesma, and tropical tree fall gaps as keystone habitat for frugivores in Costa Rica. J Trop Ecol 6:409–420

    Article  Google Scholar 

  • Li P, Martin TE (1991) Nest-site selection and nesting success of cavity-nesting birds in high elevation forest drainages. Auk 108:405–418

    Google Scholar 

  • Lloyd P (1999) Rainfall as a breeding stimulus and clutch size determinant in South African arid-zone birds. Ibis 141:637–643

    Article  Google Scholar 

  • Martin TE (1993) Evolutionary determinants of clutch size in cavity-nesting birds: nest predation or limited breeding opportunities? Am Nat 142:937–946

    Article  PubMed  CAS  Google Scholar 

  • Martin TE (1996) Life history evolution in tropical and south temperate birds: what do we know? J Avian Biol 27:263–273

    Article  Google Scholar 

  • Martin TE, Clobert J (1996) Nest predation and avian life-history evolution in Europe vs North America: a possible role of humans? Am Nat 147:131–139

    Article  Google Scholar 

  • Massa R, Sara M, Piazza MAS, Di Gaetano CD, Randazzo M, Cognetti G (2000) A molecular approach to the taxonomy and biogeography of African Parrots. Ital J Zool 67:313–317

    Article  CAS  Google Scholar 

  • Miller MF (1996) Acacia seed predation by bruchids in an African savanna ecosystem. J Appl Ecol 33(5):1137–1144

    Google Scholar 

  • Morton ES (1971) Nest predation affecting the breeding season of the clay-coloured robin, a tropical songbird. Science 181:920–921

    Article  Google Scholar 

  • Morton ES (1973) On the evolutionary advantages and disadvantages of fruit-eating in tropical birds. Am Nat 107:8–22

    Article  Google Scholar 

  • Muchai M, du Plessis MA (2005) Nest predation of grassland bird species increases with paternal activity at the nest. J Avian Biol 36:110–116

    Article  Google Scholar 

  • Nilsson JA (1994) Energetic bottleneck during breeding and the reproductive cost of being too early. J Anim Ecol 61:215–223

    Google Scholar 

  • Palgrave KC (2002) Trees of Southern Africa. Struik, Cape Town

    Google Scholar 

  • Perrins CM (1991) Tits and their caterpillar food supply. Ibis 133(1):49–54

    Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for Biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Radford AN, du Plessis M (2003) The importance of rainfall to cavity-nesting species. Ibis 145:692–694

    Article  Google Scholar 

  • Robbins CT (1981) Estimation of the relative protein costs of reproduction in birds. Condor 83:177–179

    Article  Google Scholar 

  • Rowan MK (1983) The Doves, Parrots, Louries and Cuckoos of Southern Africa. David Philip, Cape Town

    Google Scholar 

  • Selman RG, Houston DC (1996) The effect of pre-breeding diet on reproductive output in Zebra Finches. Proc R Soc Lond B 263:1585–1588

    Article  Google Scholar 

  • Selman RG, Hunter ML, Perrin MR (2002) The feeding ecology of Rüppell’s Parrot Poicephalus ruepelli in Namibia. Ostrich 73:127–134

    Google Scholar 

  • Selman R, Perrin MR, Hunter M (2004) Characteristics of and competition for nest sites by the Rüppell’s Parrot, Poicephalus ruepellii. Ostrich 75(3):89–94

    Article  Google Scholar 

  • Sinclair AR (1978) Factors affecting the food supply and breeding season of resident birds and movements of Palaearctic migrants in a tropical African savannah. Ibis 120(4):480–497

    Article  Google Scholar 

  • Skinner JD, Smithers RHN (1990) The mammals of the southern African subregion, 2nd edn. University of Pretoria Press, Pretoria

  • Stutchbury BJM, Morton ES (2001) Behavioural ecology of tropical birds. Academic, San Diego

    Google Scholar 

  • Symes CT, Perrin MR (2004) Breeding biology of the Grey-headed Parrot Poicephalus fuscicollis suahelicus in the wild. Emu 10(1):45–57

    Article  Google Scholar 

  • Tarboton W (2001) Nests and eggs of southern African birds. Struik Publishers, Cape Town

  • Taylor S, Perrin MR (2006) Aspects of the breeding biology of the Brown-headed Parrot Poicephalus cryptoxanthus. Ostrich 77(3&4):225–228

    Article  Google Scholar 

  • Van Wyk B, Van Wyk P (1997) Field guide to trees of Southern Africa. Struik, Pretoria

    Google Scholar 

  • Waltman JR, Beissinger SR (1992) Breeding behaviour of the Green-rumped Parrotlet. Wilson Bull 104:65–84

    Google Scholar 

  • Warburton LS, Perrin MR (2005) Foraging behaviour and feeding ecology of the Black-cheeked Lovebird Agapornis nigrigenis in Zambia. Ostrich 76:118–129

    Google Scholar 

  • White CMN (1965) A revised checklist of African non-passerine birds. Government Printer, Lusaka

    Google Scholar 

  • Wiebe KL, Martin K (2000) The use of incubation behaviour to adjust avian reproductive costs after egg-laying. Behav Ecol Sociobiol 48:463–470

    Article  Google Scholar 

  • Wirminghaus JO (1997) Meyer’s Parrot Poicephalus meyeri. In: Harrison JA, Allan DG, Underhill LL, Herremans M, Tree AJ, Parker V, Brown CJ (eds) The Atlas of Southern African Birds, vol 1. BirdLife South Africa, Johannesburg, pp 526–527

    Google Scholar 

  • Wirminghaus JO, Downs CT, Symes CT, Perrin MR (2001) Breeding biology of the Cape Parrot Poicephalus robustus. Ostrich 72(3&4):159–164

    Article  Google Scholar 

  • Wirminghaus JO, Downs CT, Symes CT, Perrin MR (2002) Diet of the Cape Parrot Poicephalus robustus in afromontane forests in KwaZulu-Natal, South Africa. Ostrich 73:20–25

    Article  Google Scholar 

  • Wolski P, Savenije HHG (2006) Dynamics of floodplain-island groundwater flow in the Okavango Delta, Botswana. J Hydrol 320:283–301

    Article  Google Scholar 

  • Young BE (1994) The ejects of food, nest predation and weather on the timing of breeding in tropical house wrens. Condor 96:341–353

    Google Scholar 

Download references

Acknowledgments

The project was predominantly sponsored by the Research Centre for African Parrot Conservation and British Ecological Society. Map Ives, Kai Collins and all the staff of Wilderness Safaris Botswana are thanked for their valuable support throughout the project. The support of Rutledge and Vikki Boyes was keystone to the completion of the Meyer’s Parrot Project. The Botswana Department of Wildlife and National Parks was instrumental in facilitating this project. Prof. Phil Hockey has been a constant source of support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rutledge S. Boyes.

Additional information

Communicated by J. Fjeldså.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyes, R.S., Perrin, M.R. Access to cryptic arthropod larvae supports the atypical winter breeding seasonality of Meyer’s Parrot (Poicephalus meyeri) throughout the African subtropics. J Ornithol 154, 849–861 (2013). https://doi.org/10.1007/s10336-013-0952-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-013-0952-5

Keywords

Navigation