Journal of Ornithology

, Volume 154, Issue 3, pp 813–825 | Cite as

Rediscovery of a long-lost lark reveals the conspecificity of endangered Heteromirafra populations in the Horn of Africa

  • Claire N. Spottiswoode
  • Urban Olsson
  • Michael S. L. Mills
  • Callan Cohen
  • Julian E. Francis
  • Negussie Toye
  • David Hoddinott
  • Abiy Dagne
  • Chris Wood
  • Paul F. Donald
  • Nigel J. Collar
  • Per Alström
Original Article

Abstract

The African lark genus Heteromirafra is thought to consist of three threatened species inhabiting mid-altitude grasslands, one in South Africa and two in the Horn of Africa. One of the latter, Archer’s Lark H. archeri of Somaliland, has not been seen with certainty since 1922. We surveyed its type locality as well as a nearby area of grassland east of Jijiga in adjacent north-eastern Ethiopia, where sightings of Heteromirafra larks have recently been made. First, we used a combination of morphological and molecular evidence to show that these recent sightings refer to the same taxon as Archer’s Lark. Second, we used a combination of morphological, molecular and vocal evidence to show that these populations are conspecific with the Liben (Sidamo) Lark H. sidamoensis of southern Ethiopia, but that the Horn of Africa populations are highly distinct from Rudd’s Lark H. ruddi of South Africa. Third, we suggest that the extent and quality of their habitat in north-eastern Ethiopia is small and poor, and that the type locality of Archer’s Lark in Somaliland has been completely transformed. Taken together, these results imply that there is a single species of Heteromirafra in the Horn of Africa (for which the scientific name H. archeri has priority, and which we suggest retains the English name Liben Lark), consisting of two tiny populations separated by 590 km of apparently unsuitable habitats. Environmental niche models suggest that there are no environmentally similar locations elsewhere within the region. Despite the discovery of a second population, the Liben Lark remains a highly threatened species in urgent need of conservation intervention to avert the extinction of both of its populations.

Keywords

African birds Biogeography Environmental niche mtDNA 

Zusammenfassung

Die Wiederentdeckung einer lange verschollenen Lerchenart belegt die Konspezifität der gefährdetenHeteromirafra-Populationen am Horn von Afrika

Die afrikanische Lerchengattung Heteromirafra besteht Annahmen zufolge aus drei bedrohten Arten, die Grasland in mittleren Höhenstufen besiedeln—eine davon in Südafrika, die zwei anderen am Horn von Afrika. Eine der beiden letzteren, die Somalispornlerche H. archeri, konnte in Somaliland seit 1922 nicht mehr mit Sicherheit nachgewiesen werden. Wir untersuchten sowohl die Typuslokalität als auch ein benachbartes Graslandgebiet östlich von Jijiga im angrenzenden Nordost-Äthiopien, wo kürzlich Heteromirafra-Lerchen gesichtet wurden. Erstens konnten wir durch eine Kombination aus morphologischen und molekularen Anhaltspunkten zeigen, dass es sich bei diesen neuerlichen Beobachtungen um dasselbe Taxon wie die Somalispornlerche handelt. Zweitens gelang es, mittels einer Kombination aus morphologischen, molekularen und bioakustischen Hinweisen zu belegen, dass diese Populationen konspezifisch mit der Sidamospornlerche H. sidamoensis des südlichen Äthiopiens sind, sich die Populationen am Horn von Afrika aber deutlich von der Transvaalspornlerche H. ruddi in Südafrika unterscheiden. Drittens vermuten wir, dass der Lebensraum in Nordost-Äthiopien von kleinem Ausmaß und schlechter Qualität ist und dass sich die Typuslokalität in Somaliland seither vollständig verändert hat. In der Summe legen diese Ergebnisse nahe, dass es am Horn von Afrika nur eine einzige Heteromirafra-Art gibt (für die der wissenschaftliche Name H. archeri Priorität besitzt und für die wir den englischen Namen Liben Lark (deutsch: Libenlerche) vorschlagen), welche aus zwei winzigen, durch 590 km offenbar ungeeignete Habitate getrennte Populationen besteht. Ökologische Nischenmodellierungen legen nahe, dass es in dieser Region nirgends Orte mit vergleichbaren Lebensräumen gibt. Trotz der Entdeckung einer zweiten Population bleibt die Libenlerche eine äußerst bedrohte Art, die dringend auf Schutzmaßnahmen angewiesen ist, damit es nicht zum Aussterben beider Populationen kommt.

Supplementary material

10336_2013_948_MOESM1_ESM.docx (554 kb)
Supplementary material 1 (DOCX 555 kb)

References

  1. Alström P, Barnes KN, Olsson U, Barker FK, Bloomer P, Khan AA, Qureshi MA, Ryan PG (submitted) Multilocus phylogeny of the avian family Alaudidae (larks) reveals complex morphological evolution, non-monophyletic genera and hidden species diversityGoogle Scholar
  2. Archer G, Godman EM (1961) The birds of British Somaliland and the Gulf of Aden. Vol. 3. Oliver and Boyd, EdinburghGoogle Scholar
  3. Ash JS, Miskell JE (1998) Birds of Somalia. Pica Press, RobertsbridgeGoogle Scholar
  4. Barnes KN (2007) The phylogenetics and evolution of Africa’s Larks (Alaudidae). Unpubl. PhD thesis. University of Cape TownGoogle Scholar
  5. Bioacoustics Research Program (2011) Raven Pro: interactive sound analysis software. Version 1.4. Cornell Lab of Ornithology, Ithaca, New YorkGoogle Scholar
  6. BirdLife International (2012a) Species factsheet: Heteromirafra archeri. Downloaded from http://wwwbirdlifeorg on 09/06/2012
  7. BirdLife International (2012b) Species factsheet: Heteromirafra ruddi. Downloaded from http://www.birdlife.org on 09/06/2012
  8. BirdLife International (2012c) Species factsheet: Heteromirafra sidamoensis. Downloaded from http://wwwbirdlifeorg on 09/06/2012
  9. Cohen C (2011) The phylogenetics, taxonomy and biogeography of African arid zone terrestrial birds: the bustards (Otididae), sandgrouse (Pteroclidae), coursers (Glareolidae) and Stone Partridge (Ptilopachus). PhD thesis. University of Cape TownGoogle Scholar
  10. Collar NJ (2009) Conservation-driven changes in English bird names, and the case of the Liben Lark. Bull Afr Bird Club 16:245Google Scholar
  11. Collar NJ, Stuart SN (1985) Threatened birds of Africa and related islands. ICBP & IUCN, CambridgeGoogle Scholar
  12. Collar NJ, Abebe YD, Fishpool LDC, Gabremichael MN, Spottiswoode CN, Wondafrash M (2008) Type locality, behaviour, voice, nest, eggs and plight of the Sidamo Lark Heteromirafra sidamoensis. Bull Afr Bird Club 15:180–190Google Scholar
  13. de Juana E, Suárez F, Ryan PG (2004) Family Alaudidae (larks): family introduction. In: del Hoyo J, Elliott A, Christie DA (eds) Handbook of the birds of the world, vol 9. Lynx Edicions, Barcelona, pp 496–541Google Scholar
  14. Donald PF, Buchanan GM, Collar NJ, Dellelegn Abebe Y, Gabremichael MN, Mwangi MAK, Ndang’ang’a PK, Spottiswoode CN, Wondafrash M (2010) Rapid declines in habitat quality and population size in the Sidamo (Liben) Lark Heteromirafra sidamoensis necessitate immediate conservation action. Bird Cons Intern 20:1–12CrossRefGoogle Scholar
  15. Erard C (1975) Une nouvelle alouette du sud de l’Ethiopie. Alauda 43:115–124Google Scholar
  16. Fregin S, Haase M, Olsson U, Alström P (2012) Pitfalls in comparisons of genetic distances: a case study of the avian family Acrocephalidae. Mol Phylogenet Evol 62:319–328PubMedCrossRefGoogle Scholar
  17. Gillespie R, Street-Perrott FA, Switsur R (1983) Post-glacial arid episodes in Ethiopia have implications for climate prediction. Nature 306:680–682CrossRefGoogle Scholar
  18. Ginn P, McIlleron WG, Milstein PlS (eds) (1989) The complete book of southern African birds. Struik Winchester, Cape TownGoogle Scholar
  19. Gu X, Fu YX, Li WH (1995) Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. Mol Biol Evol 12:546–557PubMedGoogle Scholar
  20. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  21. Hockey PAR, Dean WRJ, Ryan PG (eds) (2005) Roberts’ Birds of Southern Africa, VIIth edn. The Trustees of the John Voelcker Bird Book Fund, Cape TownGoogle Scholar
  22. Huelsenbeck JP, Ronquist F (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  23. Huelsenbeck JP, Larget B, Alfaro ME (2004) Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Mol Biol Evol 21:1123–1133PubMedCrossRefGoogle Scholar
  24. Jung SJA, Davies GR, Ganssen GM, Kroon D (2004) Stepwise Holocene aridification in NE Africa deduced from dust-borne radiogenic isotope records. Earth Planet Sci Lett 221:27–37CrossRefGoogle Scholar
  25. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795CrossRefGoogle Scholar
  26. Lorenzen ED, Heller R, Siegismund HR (2013) Comparative phylogeography of African savannah ungulates. Mol Ecol. doi:10.1111/j.1365-1294X.2012.05650.x Google Scholar
  27. Mackworth-Praed CW, Grant CHB (1955) African handbook of birds, 1(2): birds of eastern and north eastern Africa. Longmans, Green and Co., LondonGoogle Scholar
  28. Maphisa DH, Donald PF, Buchanan GM, Ryan PG (2009) Habitat use, distribution and breeding ecology of the globally threatened Rudd’s Lark and Botha’s Lark in eastern South Africa. Ostrich 80(1):19–28. doi:10.2989/ostrich.2009.80.1.3.761 CrossRefGoogle Scholar
  29. Mayr E, Greenway JC (1960) Check-list of birds of the world, 9. Museum of Comparative Zoology, Cambridge, MassGoogle Scholar
  30. Mayr E, McEvey A (1960) The distribution and variation of Mirafra javanica in Australia. Emu 60:155–192CrossRefGoogle Scholar
  31. McConnachie AJ, Strathie LW, Mersie W, Gebrehiwot L, Zewdie K, Abdurehim A, Abrha B, Araya T, Asaregew F, Assefa F, Gebre-Tsadik R, Nigatu L, Tadesse B, Tana T (2011) Current and potential geographical distribution of the invasive plant Parthenium hysterophorus (Asteraceae) in eastern and southern Africa. Weed Res 51:71–84CrossRefGoogle Scholar
  32. Newton MA, Raftery AE (1994) Approximate Bayesian inference with the weighted likelihood bootstrap. J Roy Statist Soc B 56:3–48Google Scholar
  33. Nigatu L, Hassen A, Sharma J, Adkins SW (2010) Impact of Parthenium hysterophorus on grazing land communities in north-eastern Ethiopia. Weed Biol Manag 10:143–152CrossRefGoogle Scholar
  34. Nylander JAA (2004) MrModeltest2, version 2.2.Available at http://www.abc.se/~nylander
  35. Olsson U, Alström P, Ericson PGP, Sundberg P (2005) Non-monophyletic taxa and cryptic species—Evidence from a molecular phylogeny of leaf-warblers (Phylloscopus, Aves). Mol Phyl Evol 36:261–276CrossRefGoogle Scholar
  36. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species’ geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  37. Rambaut A, Drummond AJ (2009) Tracer. Version 1.5.0.: Available at http://beast.bio.ed.ac.uk
  38. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  39. Ruxton GD (2006) The unequal variance t-test is an underused alternative to Student’s t-test and the Mann–Whitney U test. Behav Ecol 17:688–690CrossRefGoogle Scholar
  40. Ryan PG (2004) Heteromirafra lark species accounts. In: del Hoyo J, Elliott A, Christie DA (eds) Handbook of the birds of the world, 9. Lynx Edicions, BarcelonaGoogle Scholar
  41. Ryan PG, Bloomer P (1999) The long-billed lark complex: a species mosaic in southwestern Africa. Auk 116:194–208CrossRefGoogle Scholar
  42. Sorenson MD, Quinn TW (1998) Numts: a challenge for avian systematics and population biology. Auk 115:214–221CrossRefGoogle Scholar
  43. Spottiswoode CN, Wondafrash M, Gabremichael MN, Dellelegn Y, Mwangi MK, Collar NJ, Dolman PM (2009) Rangeland degradation is poised to cause Africa’s first recorded avian extinction. Anim Cons 12:249–257CrossRefGoogle Scholar
  44. Stephenson Clarke C (1920) ‘A new lark from Somaliland’. Bull Brit Orn Club 40:64Google Scholar
  45. Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.0b10. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  46. USGS (2004) Shuttle Radar Topography Mission. University of Maryland, Maryland, Global Land Cover FacilityGoogle Scholar
  47. Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39:306–314PubMedCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2013

Authors and Affiliations

  • Claire N. Spottiswoode
    • 1
    • 2
  • Urban Olsson
    • 3
  • Michael S. L. Mills
    • 2
    • 4
  • Callan Cohen
    • 2
    • 4
  • Julian E. Francis
    • 5
  • Negussie Toye
    • 6
  • David Hoddinott
    • 7
  • Abiy Dagne
    • 8
  • Chris Wood
    • 9
  • Paul F. Donald
    • 10
  • Nigel J. Collar
    • 11
  • Per Alström
    • 12
    • 13
  1. 1.Department of ZoologyUniversity of CambridgeCambridgeUK
  2. 2.DST/NRF Centre of Excellence at the Percy FitzPatrick InstituteUniversity of Cape TownRondeboschSouth Africa
  3. 3.Section of Systematics and Biodiversity, Department of ZoologyUniversity of GothenburgGöteborgSweden
  4. 4.Birding AfricaPinelandsSouth Africa
  5. 5.Tolpuddle ManorTolpuddle, DorsetUK
  6. 6.Addis AbabaEthiopia
  7. 7.CascadesSouth Africa
  8. 8.Ethiopian QuadrantsAddis AbabaEthiopia
  9. 9.KhartoumSudan
  10. 10.Conservation Science DepartmentRSPBThe Lodge, Sandy, BedfordshireUK
  11. 11.BirdLife InternationalCambridgeUK
  12. 12.Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesChaoyang District, BeijingPeople’s Republic of China
  13. 13.Swedish Species Information CentreSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations