Advertisement

Journal of Ornithology

, Volume 154, Issue 3, pp 803–811 | Cite as

Phenotypic differences in body size, body condition and circulating carotenoids between hybrid and “pure” red-legged partridges (Alectoris rufa) in the wild

  • F. Casas
  • F. Mougeot
  • M. E. Ferrero
  • I. Sánchez-Barbudo
  • J. A. Dávila
  • J. Viñuela
Original Article

Abstract

In the last decades, the release of large numbers of farmed-reared birds became a widespread management practice for game species. The red-legged partridge (Alectoris rufa) is a quarry species with a high economic impact in rural areas of southwest Europe. In order to increase productivity and produce heavier birds, farmed red-legged partridges have often been hybridized with Chukar partridges (A. chukar), although these species have allopatric distribution ranges. During restocking, hybrid birds may be released into wild populations and may subsequently successfully breed, thus threatening the genetic integrity of native A. rufa populations. In this study, we compared several phenotypic indicators (body size, body condition and physiological state) between “pure” and hybrid partridges in order to evaluate the possible consequences of A. chukar genetic introgression into A. rufa. For this purpose, we captured 115 wild red-legged partridges during the breeding seasons 2003–2005 in four game estates of central Spain. We observed a greater occurrence of hybrid A. rufa × A. chukar partridges nearby the sites where the release of farmed-birds took place. We also found that hybrid males were smaller and hybrid females had better body condition and lower plasma carotenoid concentration than pure partridges of the same sex. Low carotenoid levels in blood plasma might be a limitation for female reproduction (fewer carotenoids available for ornamentation or to allocate to eggs). Overall, our results showed a greater occurrence of hybrids near restocking areas and phenotypic differences between hybrids and “pure” partridge in the wild. Genetic controls of farm-reared partridges should be a key step to prevent the releases of hybrids and ensure the maintenance of the genetic integrity of wild red-legged partridge populations.

Keywords

Alectoris rufa Farm-reared partridge Hybridization Introgression Red-legged partridge Spain 

Zusammenfassung

Phänotypische Unterschiede in Körpergröße, Körperkondition und Carotinoidspiegel zwischen freilebenden „reinen“ Rothühnern ( Alectoris rufa ) und solchen hybrider Abstammung

In den letzten Jahrzehnten hat sich die Freilassung großer Mengen von Vögeln aus Geflügelzuchten zu einer verbreiteten Managementpraxis für Jagdbestände entwickelt. Das Rothuhn (Alectoris rufa) ist als Federwildart in ländlichen Gegenden Südwesteuropas von hoher wirtschaftlicher Bedeutung. Um zur Produktivitätssteigerung schwerere Vögel zu züchten, wurden Rothühner von den Züchtern häufig mit Chukarhühnern (A. chukar) gekreuzt, obgleich diese beiden Arten allopatrisch verbreitet sind. Zur Bestandsaufstockung können diese Hybriden dann in Wildpopulationen freigesetzt werden und es kann daraufhin zu erfolgreichen Bruten kommen, welche die genetische Integrität der natürlichen A. rufa-Populationen gefährden. In dieser Studie vergleichen wir mehrere phänotypische Merkmale (Körpergröße, Körperkondition und physiologischer Status) von „reinen“ und hybriden Hühnern, um mögliche Folgen der genetischen Introgression zwischen A. chukar und A. rufa abzuschätzen. Dazu fingen wir während der Brutperioden 2003–2005 115 wilde Rothühner in vier Jagdgebieten in Zentralspanien. Wir beobachteten ein verstärktes Vorkommen von A. rufa x A. chukar-Hybriden im Umkreis von Orten, an denen Zuchtvögel freigelassen worden waren. Außerdem stellten sich hybride Männchen als kleiner heraus, weibliche Hybriden waren in besserer körperlicher Verfassung und hatten einen niedrigen Carotinoid-Plasmaspiegel als „reine“ Hühner gleichen Geschlechts. Ein niedriger Carotinoidspiegel im Blutplasma könnte einen limitierenden Faktor für die weibliche Reproduktion darstellen (da weniger Carotinoide für die Ausbildung der Farbmerkmale oder die Ausstattung der Eier zur Verfügung stehen). Insgesamt belegen unsere Ergebnisse ein vermehrtes Auftreten von Hybriden in der Nähe von Freilassungsstellen und phänotypische Unterschiede zwischen Hybriden und „reinen“ Hühnern im Freiland. Die genetische Kontrolle von Hühnern aus Zuchtbetrieben hätte somit eine Schlüsselrolle bei der Vermeidung der Hybridfreisetzung inne und könnte die Aufrechterhaltung der genetischen Integrität wilder Rothuhn-Populationen gewährleisten.

Notes

Acknowledgments

We thank all game managers and hunting societies’ presidents for allowing studying partridges on their hunting estates. Particular thanks are due to all people have helped with the data collection. Fabián Casas was supported by a post-doctoral grant of the Junta de Comunidades de Castilla la Mancha (JCCM), and a JAE-Doc contract of the program «Junta para la Ampliación de Estudios» financed by the European Social Fund (ESF). This work alsoreceived a grant by the research project “Bases científicas preliminares para un plan de conservación de la perdiz roja en Castilla-La Mancha” of the Consejería de Agricultura y Medio Ambiente de la JCCM (Junta de Comunidades de Castilla-La Mancha), and CYCIT projects MCYT-REN200307851/GLO and CGL2004-02568/BOS. FM was supported by a Grant from the Ministerio de Educación y Ciencia, Spain (CGL 2006-11823) and from the JCCM, Spain (PAI06-0112).

References

  1. Aebischer NJ, Potts GR (1994) Red-legged partridge. In: Tucker GM, Heath MF (eds) Birds in Europe. Their conservation status. Birdlife conservation, vol 3. Birdlife International, Cambridge, p 214Google Scholar
  2. Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622CrossRefGoogle Scholar
  3. Alonso ME, Prieto R, Gaudioso VR, Pérez JA, Bartolomé DJ, Díez C (2008) Influence of the pairing system on the behaviour of farmed relegged partridge couples (Alectoris rufa). Appl Anim Behav Sci 115:55–66CrossRefGoogle Scholar
  4. Baratti M, Ammannati M, Magnelli C, Dessi-Fulgheri F (2004) Introgression of chukar genes into a reintroduced red-legged partridge (Alectoris rufa) population in central Italy. Anim Genet 36:29–35CrossRefGoogle Scholar
  5. Barbanera F, Negro JJ, Di Giuseppe G, Bertoncini F, Cappelli F, Dini F (2005) Analysis of the genetic Structure of red-legged partridge (Alectoris rufa, Galliforms) populations by means of mitochondrial DNA and RAPD markers: a study from central Italy. Biol Conserv 122:275–287CrossRefGoogle Scholar
  6. Barbanera F, Pergams ORW, Guerrini M, Forcina G, Panayides P, Dini F (2010) Genetic consequences of intensive management in game birds. Biol Conserv 143:1259–1268CrossRefGoogle Scholar
  7. Blanco-Aguiar JA, (2007) Variación espacial en la biología de la perdiz roja (Alectoris rufa): una aproximación multidisciplinar. PhD Diss. Universidad Complutense de Madrid, SpainGoogle Scholar
  8. Blanco-Aguiar JA, Virgós E, Villafuerte R (2004) Perdiz Roja (Alectoris rufa). In: Madroño A, González C, Atienza JC (eds) Libro Rojo de las Aves de España. Dirección General para la Biodiversidad-SEO/BirdLife, Madrid, pp 182–185Google Scholar
  9. Blanco-Aguiar JA, González-Jara P, Ferrero ME, Sánchez-Barbudo I, Virgós E, Villafuerte R, Dávila JA (2008) Assessment of game restocking contributions to anthropogenic hybridization: the case of the Iberian red-legged partridge. Anim Conserv 11:535–545CrossRefGoogle Scholar
  10. Blas J, Pérez-Rodríguez L, Bortolotti GR, Viñuela J, Marchant TA (2006) Testosterone increases bioavailability of carotenoids: insights into the honesty of sexual signalling. Proc Natl Acad Sci USA 103:18633–18637PubMedCrossRefGoogle Scholar
  11. Blount JD (2004) Carotenoids and life-history evolution in animals. Arch Biochem Biophys 430:10–15PubMedCrossRefGoogle Scholar
  12. Bortolotti GR, Negro JJ, Surai PF, Priet P (2003) Carotenoids in eggs and plasma of red-legged partridges: effects of diet and reproductive output. Physiol Biochem Zool 76:367–374PubMedCrossRefGoogle Scholar
  13. Buenestado FJ, Ferreras P, Blanco-Aguiar JA, Tortosa FS, Villafuerte R (2009) Survival and causes of mortality among wild Red-legged Partridges Alectoris rufa in southern Spain: implications for conservation. Ibis 151:720–730CrossRefGoogle Scholar
  14. Buner FD, Browne SJ, Aebischer NJ (2011) Experimental assessment of release methods for the re-establishment of a red-listed galliforms, the grey partridge (Perdix perdix). Biol Conserv 144:593–601CrossRefGoogle Scholar
  15. Casas F, Viñuela J (2010) Agricultural practices or game management: which is the key to improve red-legged partridge nesting success in agricultural landscapes? Environ Conserv 37:177–186CrossRefGoogle Scholar
  16. Casas F, Mougeot F, Viñuela J (2009) Double nesting behaviour and differences between sexes in breeding success in wild red-legged partridges Alectoris rufa. Ibis 151:743–751CrossRefGoogle Scholar
  17. Casas F, Mougeot F, Sanchéz-Barbudo I, Dávila JA, Viñuela J (2012) Fitness consequences of anthropogenic hybridization in wild red-legged partridge (Alectoris rufa, Phasianidae) populations. Biol Invasions 14:295–305CrossRefGoogle Scholar
  18. Cramp S, Simmons KEL (1980) The birds of the Western Palearctic, vol II. Oxford University Press, OxfordGoogle Scholar
  19. Cucco M, Guasco B, Malacarne G, Ottonelli R (2007) Effects of β-carotene on adult immune condition and antibacterial activity in the eggs of the grey partridge, Perdix perdix. Comp Biochem Physiol A 147:1038–1046CrossRefGoogle Scholar
  20. Dávila JA (2009) Marcadores genéticos para detectar introgresión en aves del género Alectoris. Patent no 2 323 027, Oficina Española de Patentes y MarcasGoogle Scholar
  21. Del Hoyo J, Elliott A, Sargatal J (1994) Handbook of the birds of the world, vol II. Lynx Editions, BarcelonaGoogle Scholar
  22. Delibes-Mateos M, Farfán MA, Olivero J, Vargas JM (2012) Impact of land-use changes on red-legged partridge conservation in the Iberian Peninsula. Environ Conserv 39:337–346CrossRefGoogle Scholar
  23. Díaz-Fernández S, Viñuela J, Arroyo B (2012) Harvest of red-legged partridge in central Spain. J Wildl Manag 76:1354–1363CrossRefGoogle Scholar
  24. Díaz-Sánchez S, Mateo-Moriones A, Casas F, Höfle U (2012) Prevalence of Escherichia coli, Salmonella sp. and Campylobacter sp. in the intestinal flora of farm-reared, restocked and wild red-legged partridges (Alectoris rufa): is restocking using farm-reared birds a risk? Eur J Wildl Res 58:99–105CrossRefGoogle Scholar
  25. Ferrero ME, Blanco-Aguiar JA, Lougheed SC, Sánchez-Barbudo I, de Nova PJG, Villafuerte R, Dávila JA (2011) Phylogeography and genetic structure of the red-legged partridge (Alectoris rufa): more evidence for refugia within the Iberian glacial refugium. Mol Ecol 20:2628–2642PubMedCrossRefGoogle Scholar
  26. Garrido JL (2002) Capturas de perdiz roja (Economía inducida por la caza de perdiz). In: FEDENCA (ed) Aportaciones a la gestión sostenible de la caza. FEDENCA, Madrid, pp 141–147Google Scholar
  27. Gaudioso VR, Alonso ME, Robles R, Garrido JA, Olmedo JA (2002) Effects of housing type and breeding system on the reproductive capacity of the red-legged partridge (Alectoris rufa). Poult Sci 81:169–172PubMedGoogle Scholar
  28. Gaudioso VR, Sánchez-García C, Pérez JA, Rodríguez PL, Armenteros JA, Alonso ME (2011) Does early antipredator training increase the suitability of captive red-legged partridges (Alectoris rufa) for releasing? Poult Sci 90:1900–1908PubMedCrossRefGoogle Scholar
  29. Griffith B, Scott JM, Carpenter JW, Reed C (1989) Translocation as a species conservation tool: status and strategy. Science 245:477PubMedCrossRefGoogle Scholar
  30. Guerrini M, Barbanera F (2009) Noninvasive genotyping of the red-legged partridge (Alectoris rufa, Phasianidae): semi-Nested PCR of mitochondrial DNA from feces. Biochem Genet 47:873–883PubMedCrossRefGoogle Scholar
  31. Hill GE, McGraw KJ (2006) Bird coloration: function and evolution. Harvard University Press, CambridgeGoogle Scholar
  32. Laikre L, Schwartz MK, Waples RS, Ryman N (2010) Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends Ecol Evol 25:520–529PubMedCrossRefGoogle Scholar
  33. Lynch M, O’Hely M (2001) Captive breeding and the genetic fitness of natural populations. Conserv Genet 2:363–378CrossRefGoogle Scholar
  34. Martínez J, Viñuela J, Villafuerte R (2002) Socioeconomic and cultural aspects of gamebird hunting. REGHAB project, European Commission, BrusselsGoogle Scholar
  35. Martínez-Padilla J, Mougeot F, Pérez-Rodríguez L, Bortolotti GR (2007) Nematode parasites reduce carotenoid-based signalling in male red grouse. Biol Lett 3:161–164PubMedCrossRefGoogle Scholar
  36. Millán J (2009) Diseases of the red-legged partridge (Alectoris rufa L.): a review. Wildl Biol Pract 5:70–88CrossRefGoogle Scholar
  37. Millán J, Gortazar C, Villafuerte R (2001) Marked differences in the splanchnometry of farm-bred and wild red-legged partridges (Alectoris rufa L.). Poult Sci 80:972–976PubMedGoogle Scholar
  38. Millán J, Gortázar C, Villafuerte R (2004) A comparison of the helminth faunas of wild and farm-reared red-legged partridges. J Wildl Manag 68:701–707CrossRefGoogle Scholar
  39. Møller AP, Biard C, Blount JD, Houston DC, Ninni P, Saino N, Surai PF (2000) Carotenoid-dependent signals: indicators of foraging efficiency, immunocompetence or detoxification ability? Avian Poult Sci Rev 11:137–159Google Scholar
  40. Mougeot F, Pérez-Rodríguez L, Martínez-Padilla J, Leckie F, Redpath SM (2007) Parasites, testosterone and honest carotenoid-based signalling of health. Funct Ecol 21:886–898CrossRefGoogle Scholar
  41. Mougeot F, Pérez-Rodríguez L, Sumozas N, Terraube J (2009) Parasites, condition, cellular immunity and carotenoid-based ornamentation in male red-legged partridge Alectoris rufa. J Avian Biol 40:67–74CrossRefGoogle Scholar
  42. Negri A, Pellegrino I, Mucci N, Randi E, Tizzani P, Meneguz PG, Malacarne G (2013) Mitochondrial DNA and microsatellite markers evidence a different pattern of hybridization in red-legged partridge (Alectoris rufa) populations from NW Italy. Eur J Wildl Res. doi: 10.1007/s10344-012-0686-3
  43. Olson VA, Owens IPF (1998) Costly sexual signals: are carotenoids rare, risky or required? Trends Ecol Evol 13:510–514PubMedCrossRefGoogle Scholar
  44. Padrós J (1991) Situación actual del sector. Presente y futuro. In: La perdiz roja. Fundación la Caixa, AEDOS, Barcelona, pp 7–10Google Scholar
  45. Pérez-Rodríguez L, Viñuela J (2008) Carotenoid-based bill and eye ring coloration as honest signals of condition: an experimental test in the red-legged partridge (Alectoris rufa). Naturwissenschaften 95:821–830PubMedCrossRefGoogle Scholar
  46. Pérez-Rodríguez L, Alonso-Alvarez C, Viñuela J (2007) Repeated sampling but not sampling hour affects plasma carotenoid levels. Physiol Biochem Zool 80:56–60CrossRefGoogle Scholar
  47. Potts GR (1989) The impact of releasing hybrid partridges on wild red-legged populations. Game Conserv Rev 20:81–85Google Scholar
  48. Sáenz de Buruaga M, Lucio A, Purroy FJ (2001) Reconocimiento de sexo y edad en especies cinegéticas. EDILESA (ed) León, SpainGoogle Scholar
  49. Sánchez-García C, Alonso ME, Prieto R, González V, Gaudioso VR (2009) Una visión sobre la avicultura para la producción de caza en España. ITEA-Anim 105:169–183Google Scholar
  50. SAS (2001) SAS/STAT User’s guide, version 8.01. SAS Insitute Inc., CaryGoogle Scholar
  51. Sokos K, Periklis KB, Tsachalidis EP (2008) The aims of galliforms release and choice of techniques. Wildl Biol 14:412–422CrossRefGoogle Scholar
  52. StatSoft Inc (2002) STATISTICA data analysis software system, version 6. www.statsoft.com
  53. Surai PF, Speake BK, Sparks NHC (2001) Carotenoids in avian nutrition and embryonic development. Absorption, availability and levels in plasma and egg yolk. Poult Sci 38:1–27CrossRefGoogle Scholar
  54. Svensson L (1992) Identification guide to European passerines. Mirstatryck, StockholmGoogle Scholar
  55. Villanúa D, Casas F, Viñuela J, Gortázar C, de la Morena ELG, Morales MB (2007a) First occurence of Eucoleus contortus in a little bustard Tetrax tetrax. A negative effect of red-legged partridge Alectoris rufa releases on steppe bird conservation? Ibis 149:405–406CrossRefGoogle Scholar
  56. Villanúa D, Pérez-Rodríguez L, Rodríguez O, Viñuela J, Gortázar C (2007b) How effective is pre-release nematode control in farm-reared red-legged partridges Alectoris rufa? J Helminthol 81:101–103PubMedCrossRefGoogle Scholar
  57. Villanúa D, Pérez-Rodríguez L, Casas F, Alzaga V, Acevedo P, Viñuela J, Gortázar C (2008) Sanitary risks of red-legged partridge releases: introduction of parasites. Eur J Wildl Res 54:199–204CrossRefGoogle Scholar
  58. Williams TD (2005) Mechanisms underlying the costs of egg production. Bioscience 55:39–48CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2013

Authors and Affiliations

  • F. Casas
    • 1
    • 2
  • F. Mougeot
    • 2
  • M. E. Ferrero
    • 1
  • I. Sánchez-Barbudo
    • 1
  • J. A. Dávila
    • 1
  • J. Viñuela
    • 1
  1. 1.Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM)Ciudad RealSpain
  2. 2.Estación Experimental de Zonas Áridas (EEZA-CSIC)AlmeríaSpain

Personalised recommendations