Reduced genetic diversity and sperm motility in the endangered Gran Canaria Blue Chaffinch Fringilla teydea polatzeki

Abstract

The Blue Chaffinch (Fringilla teydea) is endemic to the Canary Islands and restricted to the pine forests on Tenerife (ssp. teydea) and Gran Canaria (ssp. polatzeki). While the teydea population is large and stable, the polatzeki population underwent a dramatic decline in the twentieth century and currently numbers less than 200 individuals. Here, we show that microsatellite allelic diversity is lower in polatzeki than in teydea, consistent with a genetic bottleneck scenario. Our genotyped polatzeki individuals, which were wild-caught but currently used in a captive breeding programme, have the same allelic diversity as free-ranging birds. However, the captive polatzeki males seem to have reduced sperm motility as compared with captive teydea males, which could be an effect of reduced genetic diversity. Because polatzeki and teydea are phylogenetically distinct, they should be recognized as Evolutionarily Significant Units by conservation authorities. We also recommend maintaining the captive polatzeki population as a pre-emptive measure against extinction in the wild.

Zusammenfassung

Eingeschränkte genetische Vielfalt und Spermienbeweglichkeit beim vom Aussterben bedrohten Teide-Blaufinken ( Fringilla teydea polatzeki ) auf Gran Canaria

Der Teide-Blaufink (Fringilla teydea polatzeki) ist auf den Kanarischen Inseln endemisch und lebt ausschließlich in den Pinienwäldern auf Teneriffa (ssp. teydea) und Gran Canaria (ssp. polatzeki). Während die Population auf Teneriffa groß und stabil ist, erfuhr die Population auf Gran Canaria im 20. Jahrhundert einen dramatischen Rückgang und umfasst zur Zeit weniger als 200 Individuen. In dieser Arbeit zeigen wir, dass die allelische Vielfalt der Mikrosatelliten bei Polatzeki geringer als bei Teydea ist, was im Einklang mit einem genetischen „Engpass-Szenario“steht. Unsere genotypisch eindeutig identifizierten Polatzeki-Individuen, die Wildfänge waren und jetzt in Gefangenschaft in einem Brutprogramm eingesetzt werden, zeigten die gleiche allelische Vielfalt wie die Tiere im Freiland. Aber die gefangenen Polatzeki-Männchen scheinen gegenüber den Teydea-Männchen eine reduzierte Spermienbeweglichkeit zu haben, was an einer geringeren genetischen Vielfalt liegen könnte. Weil Polatzeki und Teydea phylogenetisch unterschiedlich sind, sollten sie vom Naturschutz offiziell als Evolutionary Significant Units (ESU) anerkannt werden. Wir empfehlen außerdem, die derzeit in Gefangenschaft gehaltene Polatzeki-Population weiterzuführen als Vorsichtsmaßnahme gegen die mögliche Ausrottung im Freiland.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Anmarkrud JA, Kleven O, Augustin J, Bentz KH, Blomqvist D, Fernie KJ, Magrath MJL, Pärn H, Quinn JS, Robertson RJ, Szép T, Tarof S, Wagner RH, Lifjeld JT (2011) Factors affecting germline mutations in a hypervariable microsatellite: a comparative analysis of six species of swallows (Aves: Hirundinidae). Mut Res/Fund Mol Mech Mutagen 708:37–43

    Article  CAS  Google Scholar 

  2. Bannerman DA (1922) The Canary Islands. Their history, natural history and scenery. Gurney and Jackson, London

  3. Bannerman DA (1963) Birds of the Atlantic islands, vol. 1. A history of the birds of the Canary Islands and of the Salvages. Oliver and Boyd, Edinburgh, London

    Google Scholar 

  4. Beissinger SR, McCullough DR (2002) Population viability analysis. University of Chicago Press, Chicago

    Google Scholar 

  5. BirdLife International (2000) Threatened birds of the world. Lynx and BirdLife International, Barcelona, Cambridge

    Google Scholar 

  6. BirdLife International (2012) Fringilla teydea. In: IUCN Red List of Threatened Species. http://www.iucnredlist.org. Accessed 30 Sept 2012

  7. Carrascal LM, Seoane J (2008) Método de censo y estima de población del pinzón azul de Gran Canaria. http://www.lmcarrascal.eu/pdf/ft08.pdf

  8. del Hoyo J, Elliott A, Christie DA (2010) Handbook of the birds of the world, vol. 15, Weavers to New World warblers. Lynx, Barcelona

    Google Scholar 

  9. Excoffier LGL, Schneider S (2005) ARLEQUIN ver 3.0: an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50

    CAS  Google Scholar 

  10. Fitzpatrick JL, Evans JP (2009) Reduced heterozygosity impairs sperm quality in endangered mammals. Biol Lett 5:320–323

    PubMed  Article  Google Scholar 

  11. Frankham R (2010) Where are we in conservation genetics and where do we need to go? Conserv Genet 11:661–663

    Article  Google Scholar 

  12. Gage MJG, Surridge AK, Tomkins JL, Green E, Wiskin L, Bell DJ, Hewitt GM (2006) Reduced heterozygosity depresses sperm quality in wild rabbits, Oryctolagus cuniculus. Curr Biol 16:612–617

    PubMed  Article  CAS  Google Scholar 

  13. Garcia-del-Rey E, Gil L, Nanos N, López-de-Heredia U, Muñoz PG, Fernández-Palacios JM (2009) Habitat characteristics and seed crops used by blue chaffinches Fringilla teydea in winter: implications for conservation management. Bird Study 56:168–176

    Article  Google Scholar 

  14. Garcia-del-Rey E, Otto R, Fernández-Palacios JM (2010) Medium-term response of breeding blue chaffinch Fringilla teydea teydea to experimental thinning in a Pinus canariensis plantation (Tenerife, Canary Islands). Ornis Fenn 87:180–188

    Google Scholar 

  15. Garcia-del-Rey E, Nanos N, López-de-Heredia U, Muñoz PG, Otto R, Fernández-Palacios JM, Gil L (2011) Spatiotemporal variation of a Pinus seed rain available for an endemic finch in an insular environment. Eur J Wildl Res 57:337–347

    Article  Google Scholar 

  16. Gill F, Donsker D (2012) IOC World Bird Names (v.3.1). http://www.worldbirdnames.org

  17. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (v.2.9.3). http://www.unil.ch/izea/softwares/fstat.html

  18. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  19. IUCN 2012. The IUCN Red List of Threatened Species. V.2012.1 http://www.iucnredlist.org

  20. Jamieson IG (2007) Has the debate over genetics and extinction of island endemics truly been resolved? Anim Conserv 10:139–144

    Article  Google Scholar 

  21. Johnson TH, Stattersfield AJ (1990) A global review of island endemic birds. Ibis 132:167–180

    Article  Google Scholar 

  22. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    PubMed  Article  Google Scholar 

  23. Kleven O, Fossøy F, Laskemoen T, Robertson RJ, Rudolfsen G, Lifjeld JT (2009) Comparative evidence for the evolution of sperm swimming speed by sperm competition and female sperm storage duration in passerine birds. Evolution 63:2466–2473

    PubMed  Article  Google Scholar 

  24. Leberg PL (2002) Estimating allelic richness: effects of sample size and bottlenecks. Mol Ecol 11:2445–2449

    PubMed  Article  CAS  Google Scholar 

  25. Li Y-C, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    PubMed  Article  CAS  Google Scholar 

  26. Moritz C (1994) Defining ‘Evolutionarily Significant Units’ for conservation. Trends Ecol Evol 9:373–375

    PubMed  Article  CAS  Google Scholar 

  27. Nei M, Maruyama T, Chakraborty R (1975) Bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  28. Pestano J, Brown R, Rodriguez F, Moreno A (2000) Mitochondrial DNA control region diversity in the endangered blue chaffinch, Fringilla teydea. Mol Ecol 9:1421–1425

    PubMed  Article  CAS  Google Scholar 

  29. Phillimore AB, Owens IPF (2006) Are subspecies useful in evolutionary and conservation biology? Proc R Soc Lond B 273:1049–1053

    Article  Google Scholar 

  30. Primmer CR, Møller AP, Ellegren H (1996) A wide-range survey of cross-species microsatellite amplification in birds. Mol Ecol 5:365–378

    PubMed  CAS  Google Scholar 

  31. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  32. R Development Core Team (2010) R: a language and environment of statistical computing. Vienna, Austria

    Google Scholar 

  33. Rodríguez F, Moreno A (2004) Pinzón Azul de Gran Canaria, Fringilla teydea polatzeki. In: Madroño A, González C, Atienza JC (eds) Libro Rojo de las Aves de España. Dirección General para la Biodiversidad-SEO/BirdLife, Madrid

    Google Scholar 

  34. Rodríguez F, Moreno AC (2008) Breeding biology of the endangered blue chaffinch Fringilla teydea polatzeki in Gran Canaria (Canary Islands). Acta Ornithol 43:207–215

    Article  Google Scholar 

  35. Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10

    Article  Google Scholar 

  36. Spencer CC, Neigel JE, Leberg PL (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Mol Ecol 9:1517–1528

    PubMed  Article  CAS  Google Scholar 

  37. Suárez NM, González A, Betancor E, Pestano JJ (2009) Microsatellite loci isolation in the endangered Gran Canarian blue chaffinch (Fringilla teydea polatzeki) and their utility in closely related taxa. Conserv Genet 10:581–583

    Article  Google Scholar 

  38. Suárez NM, Betancor E, Fregel R, Rodríguez F, Pestano J (2012) Genetic signature of a severe forest fire on the endangered Gran Canaria blue chaffinch (Fringilla teydea polatzeki). Conserv Genet 13:499–507

    Article  Google Scholar 

  39. Zink RM (2004) The role of subspecies in obscuring avian biological diversity and misleading conservation policy. Proc R Soc Lond B 271:561–564

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jostein Gohli and Even Stensrud for assistance in the field on Tenerife, and Becky Cramer, Melissah Rowe and two anonymous referees for comments. Financial support was received from the Research Council of Norway. Permits for blood and sperm sampling were issued by Excmo. Cabildo de Tenerife and the Canarian Government. The experimental work complies with the current laws of Spain and Norway.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jan T. Lifjeld.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garcia-del-Rey, E., Marthinsen, G., Calabuig, P. et al. Reduced genetic diversity and sperm motility in the endangered Gran Canaria Blue Chaffinch Fringilla teydea polatzeki . J Ornithol 154, 761–768 (2013). https://doi.org/10.1007/s10336-013-0940-9

Download citation

Keywords

  • Allelic richness
  • Canary Islands
  • Extinction
  • Microsatellites
  • Sperm swimming speed