Journal of Ornithology

, Volume 154, Issue 3, pp 727–737 | Cite as

Molecular insights on the re-colonization of the Limpopo Valley, South Africa, by Southern Ground-Hornbills

  • N. Theron
  • D. Dalton
  • J. P. Grobler
  • R. Jansen
  • A. Kotze
Original Article


Southern Ground-Hornbills (Bucorvus leadbeateri) are co-operative breeders that occur in groups of 2–9 individuals. Long life spans, large territory sizes (100 km2), and low reproductive rates render these birds vulnerable to threats such as loss of habitat, persecution, poisoning and loss of suitable nesting sites. In the Limpopo Valley of South Africa, the species is currently re-establishing after a serious decline in numbers. In this study, we use observation, capture and population genetics approaches to gain insights into the nature of the re-colonisation of the Limpopo Valley. We determined the effective population size, genetic diversity estimates, relatedness, parentage, sex ratios, age structure and productivity. The re-colonisation of the Limpopo Valley was shown to have occurred by a number of unrelated individuals. This was demonstrable by the very low levels of average relatedness of the population, as well as the favourable levels of heterozygosity across age and sex categories. Within-group relatedness was as expected, with juveniles related to at least one parent from their natal group. Inferences on breeding behaviour based on genetic testing results provides the first evidence that SGH are not as monogamous as previously thought, with two instances recorded of extra pair copulations. Finally, we demonstrate the application of microsatellite markers to enumerate processes that are difficult to quantify through observation.


Southern Ground-Hornbill Microsatellite Genetic diversity Relatedness Co-operative breeding Conservation genetics 


Molekulare Einblicke in die Wiederbesiedlung des Limpopo Valley, Südafrika, durch Südliche Hornraben

Südliche Hornraben (Bucorvus leadbeateri) sind kooperative Brutvögel, die in Gruppen von 2–9 Individuen brüten. Lange Lebensspannen, große Brutterritorien (100 km2) und niedrige Reproduktionsraten machen diese Vogelart anfällig für Gefährdungen wie Lebensraumverlust, Verfolgung, Vergiftung und Verlust von geeigneten Nistplätzen. Im Limpopo Valley in Südafrika erholt sich aktuell das Vorkommen dieser Art nach einem deutlichen Bestandsrückgang. In dieser Studie nutzten wir Beobachtungs- und Fangdaten sowie populationsgenetische Ansätze um einen tieferen Einblick in die Struktur der Wiederbesiedlung des Limpopo Valley. Wir bestimmten die aktuelle Populationsgröße, genetische Diversität, Verwandtschaftsverhältnisse, Abstammung, Geschlechterverhältnisse, Altersstruktur und Produktivität. Die Wiederbesiedlung des Limpopo Valley zeigte, dass eine Anzahl nicht-verwandter Individuen auftrat. Dies konnte belegt werden durch ein sehr niedriges Niveau der Verwandtschaftsgrade innerhalb der Population, so wie durch günstige Heterozygositätsgrade über Altersund Geschlechterkategorien. Verwandtschaftsverhältnisse innerhalb einer Gruppe konnten wie erwartet nachgewiesen werden, wobei Juvenile mit mindestens einem Elterntier aus ihrer eigenen Geburtsgruppe verwandt waren. Brutverhaltne und genetische Daten geben erste Belege dafür, dass Südliche Hornraben nicht so monogam sind wie zuvor angenommen: zweimal konnten Kopulationen außerhalb des Paarverbundes nachgewiesen werden. Schließlich zeigen wir die Anwendbarkeit von Mikrosatellitenmarkern zur Verdeutlichung von Prozessen, die durch reine Beobachtungen nur schwer zu quantifizieren sind.



We thank the Percy FitzPatrick Institute (University of Cape Town) for donating samples from the Kruger National Park. Sub-samples of all individuals were sent for biomaterial banking at the National Zoological Gardens of South Africa. Our gratitude to the many farmers in the Limpopo Valley who contributed to this study. We further acknowledge the Mabula Ground Hornbill Project for providing valuable information and the National Research Foundation for financial support towards the molecular genetic analysis. The proposal for this project has been reviewed by the Ethics and Scientific Committee of the National Zoological Gardens of South Africa. Furthermore, all relevant permits and permission from landowners were acquired before capture and sampling of SGH in the Limpopo Province. Finally, we acknowledge the helpful inputs of two anonymous reviewers.


  1. Cunningham PL (1996) Prospects for sustained harvesting of mopane (Colophospermum mopane) on the Venetia Limpopo Nature Reserve and its implications for browsing ungulates. Dissertation, University of Stellenbosch, South AfricaGoogle Scholar
  2. Du Plessis MA, Siegfried WR, Armstrong AJ (1995) Ecological and life-history correlates of cooperative breeding in South African Birds. Oecologia 102:180–188CrossRefGoogle Scholar
  3. Excoffier L, Laval G, Schneider S (2005) Arlequin, version 3.0: an integrated software package for population genetics data analysis. Computational and Molecular Population Genetics Laboratory (CMPG), Institute of Zoology, University of Berne, SwitzerlandGoogle Scholar
  4. Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121CrossRefGoogle Scholar
  5. Griffiths R, Double MC, Orr K, Dawson RJG (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075. doi: 10.1046/j.1365-294x.1998.00389.x PubMedCrossRefGoogle Scholar
  6. Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555. doi: 10.1111/j.1755-0998.2009.02787.x PubMedCrossRefGoogle Scholar
  7. Kemp AC (2000) Southern Ground Hornbill. In: Barnes KN (ed) The Eskom red data book of birds of South Africa, Lesotho and Swaziland. Birdlife South Africa, Johannesburg, pp 117–119Google Scholar
  8. Kemp AC, Kemp MI (1980) The biology of the Southern Ground Hornbill Bucorvus leadbeateri (Vigors) (Aves: Bucerotidae). Ann Transvaal Mus 32:65–100Google Scholar
  9. Kemp MI, Kemp AC (1991) Timing of egg laying by Southern Ground Hornbills Bucorvus leadbeateri in the central Kruger National Park, South Africa. Ostrich 62:80–82CrossRefGoogle Scholar
  10. Knight GM (1990) Status, distribution and foraging ecology of the Southern Ground Hornbill (Bucorvuscafer) in Natal. Dissertation, University Natal, DurbanGoogle Scholar
  11. Molecular Ecology Resources Primer Development Consortium, Aggarwal RK, Allainguillaume J et al (2011) Permanent genetic resources added to molecular ecology resources database 1 August 2010–30 September 2010. Mol Ecol Resour 11:219–222. doi: 10.1111/j.1755-0998.2010.02944.x PubMedCrossRefGoogle Scholar
  12. Morrison K, Daly B, Burden D, Engelbrecht D, Jordan M, Kemp A, Kemp M, Potgieter C, Turner A, Friedmann Y (ed) (2005) Southern Ground Hornbill (Bucorvus leadbeateri) PHVA workshop report. Conservation Breeding Specialist Group (SSC/IUCN)/CBSG South Africa; Endangered Wildlife TrustGoogle Scholar
  13. Neff BD, Gross MR (2001) Microsatellite evolution in vertebrates: inference from AC dinucleotide repeats. Evolution 55:1717–1733. doi: 10.1111/j.0014-3820.2001.tb00822.x PubMedGoogle Scholar
  14. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  15. Park SDE (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. Dissertation, University of DublinGoogle Scholar
  16. Vernon CJ (1984) The Ground Hornbill at the Southern extremity of its range. Ostrich 57:16–24CrossRefGoogle Scholar
  17. Wang J (2002) An estimator for pairwise relatedness using molecular markers. Genetics 160:1203–1215PubMedGoogle Scholar
  18. Wang J (2004) Sibship reconstruction from genetic data with typing errors. Genetics 166:1963–1979. doi: 10.1534/genetics.166.4.1963 PubMedCrossRefGoogle Scholar
  19. Wang J (2009) A new method for estimating effective population sizes from a single sample of multilocus genotypes. Mol Ecol 18:2148–2164. doi: 10.1111/j.1365-294X.2009.04175.x PubMedCrossRefGoogle Scholar
  20. Wang J (2010) COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol Resour 11(1):141–145. doi: 10.1111/j.1755-0998.2010.02885.x CrossRefGoogle Scholar
  21. Wang J, Santure AW (2009) Parentage and sibship inference from multilocus genotype data under polygamy. Genetics 181:1579–1594. doi: 10.1534/genetics.108.100214 PubMedCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2013

Authors and Affiliations

  • N. Theron
    • 2
    • 3
  • D. Dalton
    • 1
    • 2
  • J. P. Grobler
    • 2
  • R. Jansen
    • 4
  • A. Kotze
    • 1
    • 2
  1. 1.National Zoological Gardens of South AfricaPretoriaSouth Africa
  2. 2.Department of GeneticsUniversity of the Free StateBloemfonteinSouth Africa
  3. 3.The Mabula Ground Hornbill Research and Conservation ProjectBela-BelaSouth Africa
  4. 4.Department of Environmental, Water and Earth SciencesTshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations