Journal of Ornithology

, Volume 154, Issue 2, pp 455–463 | Cite as

The evolution of the feather: scales on the tail of Sinosauropteryx and an interpretation of the dinosaur’s opisthotonic posture

  • Theagarten Lingham-Soliar
Original Article


The epidermis and dermis are exposed in the tail region of the theropod dinosaur Sinosauropteryx. The specimen under study, like many others of the genus and other air-breathing vertebrates discovered in the Jehol biota, shows strong opisthotonus (i.e., recurvature of the spine) that includes the neck and tail. Here, recurvature of the tail upwards is considered to have aided the separation of the dermal and epidermal elements of the skin. Addressing a somewhat controversial question, the sequence of events in which this apparently occurred also suggests that the development of opisthotonus may have occurred post mortem rather than perimortem in this specimen. Crucially, epidermal structures considered to be scales are preserved overlying the posterior part of the tail and alongside it. They are approximately 2.0–2.5 mm in diameter and have distinctive papillae radiating around a central point, comparable to scales in some modern day lizards. Some of these scales overlie thick structural fibres external to the body outline, extending posteriorly at steep angles to the body's long axis, considered by many workers to be protofeathers. Intervening between the epidermal scales and the deeper structural fibres are preserved traces of a dermal fibre meshwork with two layers of oppositely oriented fibres.


Sinosauropteryx Epidermis Dermis Structural fibres Scales Post mortem opisthotonus 


Die Evolution der Feder: Schuppen auf dem Schwanz von Sinosauropteryx und eine Interpretation der opisthotonischen Wirbelsäulenverkrümmung

Die Epidermis und Dermis des zu den Therapoden gehörenden Sinosauropteryx liegen in der Schwanzregion frei. Das untersuchte Exemplar zeigt, wie viele andere des Genus und andere lungenatmende Wirbeltiere der Jehol Biota, einen starken Opisthotonus, also eine Rückwärtskrümmung der Wirbelsäule einschließlich Hals und Schwanz. Wir nehmen an, dass die Rückwärtskrümmung des Schwanzes zur Trennung der dermalen und epidermalen Teile der Haut beigetragen hat. Die Abfolge der Vorgänge in der dies offenbar auftrat, legen auch nahe, dass der manchmal kontrovers diskutierte Opisthotonus eher postmortem als im Sterben auftrat. Von entscheidender Bedeutung sind epidermale Strukturen, die für Schuppen gehalten werden, die das hintere Ende des Schwanzes und dessen Seiten bedecken. Sie haben einen Durchmesser von ungefähr 2.0–2.5 mm und haben charakteristische Papillen, die um einen zentralen Punkt herum liegen, ähnlich wie bei den Schuppen von manchen rezenten Echsen. Manche dieser Schuppen liegen auf dicken strukturellen Fasern, die auf der Außenseite des Körpers im spitzen Winkel nach hinten liegen und von vielen Wissenschaftlern für Federvorläufer gehalten werden. Zwischen den epidermalen Schuppen und den tiefer liegenden strukturellen Fasern ist ein Netzwerk von dermalen Fasern mit zwei Lagen von gegenläufig orientierten Fasern erhalten.


  1. Chen P-J, Dong ZM, Zheng SN (1998) An exceptionally well-preserved theropod dinosaur from the Yixian Formation of China. Nature 391:147–152CrossRefGoogle Scholar
  2. Chiappe LM (2012) The Dinosaur Conspiracy. Bioscience 62(8):770–772CrossRefGoogle Scholar
  3. Currie PJ, Chen P-J (2001) Anatomy of Sinosauropteryx prima from Liaoning, northeastern China. Can J Earth Sci 38:1705–1727CrossRefGoogle Scholar
  4. Faux CM, Padian K (2007) The opisthotonic posture of vertebrate skeletons: postmortem contraction or death throes? Paleobiology 33(2):201–226CrossRefGoogle Scholar
  5. Feduccia A (2012) Riddle of the feathered dragons: hidden birds of China. Yale University PressGoogle Scholar
  6. Gohlich UB, Chiappe LM (2006) A new carnivorous dinosaur from the Late Jurassic Solnhofen archipelago. Nature 440:329–332. doi: 10.1038/nature04579 PubMedCrossRefGoogle Scholar
  7. Lingham-Soliar T (2003) The dinosaurian origin of feathers: perspectives from dolphin (Cetacea) collagen fibres. Naturwissenschaften 90:563–567PubMedCrossRefGoogle Scholar
  8. Lingham-Soliar T (2010) Dinosaur protofeathers: pushing back the origin of feathers into the middle Triassic? J Ornithol 151:193–200. doi: 10.1007/s10336-009-0446-7 CrossRefGoogle Scholar
  9. Lingham-Soliar T (2011) The evolution of the feather: Sinosauropteryx, a colourful tail. J Ornithol 152(3):567–577. doi: 10.1007/s10336-010-0620-y CrossRefGoogle Scholar
  10. Lingham-Soliar T (2012) The evolution of the feather: Sinosauropteryx, life, death and preservation of an alleged feathered dinosaur. J Ornithol 153:699–711. doi: 10.1007/s10336-011-0787-x CrossRefGoogle Scholar
  11. Lingham-Soliar T, Glab J (2010) Dehydration: a mechanism for the preservation of fine detail in fossilised soft tissue of ancient terrestrial animals. Palaeogeogr Palaeoclimatol Palaeoecol 291:481–487. doi: 10.1016/j.palaeo.2010.03.019 CrossRefGoogle Scholar
  12. Lingham-Soliar T, Feduccia A, Wang X (2007) A new Chinese specimen indicates that ‘protofeathers’ in the early Cretaceous theropod dinosaur Sinosauropteryx are degraded collagen fibres. Proc Roy Soc Lond B 274:1823–1829. doi: 10.1098/rspb.2007.0352 CrossRefGoogle Scholar
  13. MacCoun RJ (1998) Biases in the interpretation and use of research results. Annu Rev Psychol 49:1–26CrossRefGoogle Scholar
  14. Martin LD, Czerkas SA (2000) The fossil record of feather evolution in the mesozoic. Am Zool 40:687–694CrossRefGoogle Scholar
  15. Matthew WD (1915) Dinosaurs with special reference to the American Museum collections. New York American Museum of Natural History. By permission of Project Gutenberg
  16. Paine T (1791) The Rights of Man. Wordsworth Editions Ltd, Ware, 1996Google Scholar
  17. Reisdorf AG, Wuttke M (2012) Re-evaluating Moodie’s opisthotonic-posture hypothesis in fossil vertebrates part I: reptiles—the taphonomy of the bipedal dinosaurs Compsognathus longipes and Juravenator starki from the Solnhofen archipelago (Jurassic, Germany). Palaeobiol Palaeoenv 92:119–168. doi: 10.1007/s12549-011-0068-y
  18. Vinther J, Briggs DE (2008) The color of fossil feathers. Biol Lett. doi: 10.1098/rsbl.2008.0302 PubMedGoogle Scholar
  19. Wuttke M, Reisdorf AG (2012) Taphonomic processes in terrestrial and marine environments, Palaeobio Palaeoenv 92:1–3. doi: 10.1007/s12549-012-0070-z Google Scholar
  20. Xu X, Norell MA, Kuang X, Wang X, Zhao Q, Jia C (2004) Basal tyrannosauroids from China and evidence for protofeathers in tyrannosauroids). Nature 431:680–684PubMedCrossRefGoogle Scholar
  21. Xu X, Wang K, Zhang K, Ma Q, Xing L, Sullivan C, Hu D, Cheng S, Wang S (2012) A gigantic feathered dinosaur from the lower Cretaceous of China. Nature 484:92–95PubMedCrossRefGoogle Scholar
  22. Zhang F, Kearns SL, Orr PJ, Benton MJ, Zhou Z, Johnson D, Xu X, Wang X (2010) Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature 463:1075–1078. doi: 10.1038/nature08740 Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2012

Authors and Affiliations

  1. 1.Biological and Conservation SciencesUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations