DNA barcoding and evolutionary relationships in Accipiter Brisson, 1760 (Aves, Falconiformes: Accipitridae) with a focus on African and Eurasian representatives

Abstract

We obtained full (647 bp) or mini (291 bp) DNA barcodes of 140 mostly African and European specimens of 25 Accipiter (Aves: Accipitridae) species. Kimura two-parameter (K2P) distances were calculated between barcodes to determine the thresholds of intra- and interspecific species boundaries. Thresholds were comparable to or higher than those in previous studies and ranged from 2.8 to 3.0 % (best compromise threshold based on cumulative intra- and interspecific K2P distances) and from 3.9 to 5.3 % (ten times the average intraspecific K2P distance). Identification success was determined using the best match and best close-match criteria and ranged between 84 % (mini barcodes) and 90 % (full barcodes). Incorrectly or ambiguously identified specimens belonged to two species that were represented by single sequences in the database (A. madagascariensis and A. trivirgatus) and three species pairs that shared at least one haplotype: viz. A. nisus and A. rufiventris, A. gularis and A. virgatus, and A. cooperii and A. gundlachi. The other 19 species were unambiguously identified using the full DNA barcodes. The studied species belong to eight traditional superspecies, of which three ([gentilis], [cooperii], and [tachiro]) were well supported. In one superspecies, [badius], species pairs were supported but not the superspecies.

Zusammenfassung

DNA-Barcoding und evolutionäre Beziehungen innerhalb der Gattung Accipiter Brisson, 1760 (Aves, Falconiformes: Accipitridae), mit besonderem Schwerpunkt auf deren afrikanischen und eurasischen Vertretern

Wir verwendeten vollständige DNA-Barcodes (647 bp) oder Mini-Barcodes (291 bp) von 140 Individuen (hauptsächlich afrikanischer und europäischer Herkunft) aus 25 Accipiter-Arten (Aves: Accipitridae). Um die Schwellenwerte für die intra- und interspezifischen Artgrenzen zu ermitteln, berechneten wir die Kimura-2-Parameter-Distanzen (K2P) zwischen den Barcodes. Die Schwellenwerte waren vergleichbar oder höher als die aus früheren Studien und lagen zwischen 2,8 und 3,0 % (BCTh-Schwellenwert (Best Compromise Threshold) auf der Grundlage kumulierter intra- und interspezifischer K2P-Distanzen) beziehungsweise zwischen 3,9 und 5,3 % (zehnfacher Durchschnitt der intraspezifischen K2P-Distanz). Der Erfolg der Zuordnung wurde anhand von Best-Match- und Best-Close-Match-Kriterien bestimmt und reichte von 84 % (Mini-Barcodes) bis 90 % (vollständige Barcodes). Nicht korrekt oder nicht eindeutig bestimmte Individuen stammten von zwei Arten, die in der Datenbank jeweils nur durch einzelne Sequenzen vertreten waren, sowie von drei Artenpaaren, welche mindestens einen gemeinsamen Haplotyp aufwiesen, nämlich: A. nisus − A. rufiventris, A. gularis − A. virgatus und A. cooperii − A. gundlachi. Die übrigen 19 Arten konnten anhand der vollständigen DNA-Barcodes eindeutig zugeordnet werden. Die untersuchten Arten gehören zu acht traditionell gebräuchlichen Superspezies, von denen drei ([gentilis], [cooperii] und [tachiro]) gut bestätigt wurden. Für eine Superspezies ([badius]), konnten zwar Artenpaare bestätigt werden, die Superspezies jedoch nicht.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aliabadian M, Kaboli M, Nijman V, Vences M (2009) Molecular identification of birds: performance of distance-based DNA barcoding in three genes to delimit parapatric species. PLoS ONE 4:e4119

    PubMed  Article  Google Scholar 

  2. Ananian V, Aghababyan K, Tumanyan S, Janoyan G, Bildstein K (2010) Shikra Accipiter badius breeding in Armenia. Sandgrouse 32:151–155

    Google Scholar 

  3. Bildstein KL (2004) Raptor migration in the Neotropics: patterns, processes, and consequences. Ornithol Neotropical 15:83–99

    Google Scholar 

  4. Cai Y, Yue H, Jiang W, Xie S, Li J, Zhou S (2010) DNA barcoding on subsets of three families in Aves. mtDNA 21:132–137

    CAS  Google Scholar 

  5. Chelomina GN (2006) Ancient DNA. Genetika 42:293–309

    PubMed  CAS  Google Scholar 

  6. DeSalle R, Egan MG, Siddall M (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Phil Trans R Soc B Biol Sci 1462:1905–1916

    Article  Google Scholar 

  7. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  8. Ferguson-Lees J, Christie DA (2001) Raptors of the world. Christopher Helm, London

  9. Griffiths CS, Barrowclough GF, Groth JG, Mertz LA (2007) Phylogeny, diversification and classification of the Accipitridae based on DNA sequences of the RAG-1 exon. J Avian Biol 38:587–602

    Google Scholar 

  10. Hajibabei M, Smith MA, Janzen DH, Rodriguez JJ, Whirfield JB, Hebert PDN (2006) A minimalist barcode can identify a specimen whose DNA is degraded. Mol Ecol Notes 6:959–964

    Article  Google Scholar 

  11. Hawksworth DL (2010) Terms used in bionomenclature. Including terms used in botanical, cultivated plant, phylogenetic, phytosociological, prokaryote (bacteriological), virus, and zoological nomenclature. Global Biodiversity Information Facility, Copenhagen

  12. Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321

    Article  CAS  Google Scholar 

  13. Hebert PDN, Stoeckle MY, Zemlak ST, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:1657–1663

    Article  CAS  Google Scholar 

  14. Hillis DM, Huelsenbeck JP (1992) Signal, noise, and reliability in molecular phylogenetic analyses. J Hered 83:189–195

    PubMed  CAS  Google Scholar 

  15. Johnsen A, Rindal E, Ericson PGP, Zuccon D, Kerr KCR, Stoeckle MY, Lifjeld JT (2010) DNA barcoding of Scandinavian birds reveals divergent lineages in trans-Atlantic species. J Ornith 151:565–578

    Article  Google Scholar 

  16. Kerr KCR, Stoeckle MY, Dove CJ, Weigt LA, Francis CM, Hebert PDN (2007) Comprehensive DNA barcode coverage of North American birds. Mol Ecol Notes 7:535–543

    PubMed  Article  CAS  Google Scholar 

  17. Kerr KCR, Lijtmaer DA, Barreira AS, Hebert PDN, Tubaro PL (2009a) Probing evolutionary patterns in neotropical birds through DNA barcodes. PLoS ONE 4:e4379

    Google Scholar 

  18. Kerr KCR, Birks SM, Kalyakin MV, Red’kin YA, Koblik EA, Hebert PDN (2009b) Filling the gap—COI barcode resolution in eastern Palearctic Birds. Front Zool 6:29

    PubMed  Article  Google Scholar 

  19. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    PubMed  Article  CAS  Google Scholar 

  20. Kruckenhauser L, Haring E, Pinsker W, Riesing MJ, Winkler H, Wink M, Gamauf A (2004) Genetic versus morphological differentiation of Old World buzzards (genus Buteo, Accipitridae). Zool Scripta 33:197–211

    Article  Google Scholar 

  21. Lefébure T, Douady CJ, Gouy M, Gilbert J (2006) Relationship between morphological taxonomy and molecular divergence within crustacea: proposal of a molecular threshold to help species delimitation. Mol Phylogen Evol 40:435–447

    Article  Google Scholar 

  22. Lerner HRL (2007) Molecular phylogenetics of diurnal birds of prey in the avian Accipitridae family (dissertation). University of Michigan, Ann Arbor

  23. Lerner HRL, Mindell DP (2005) Phylogeny of eagles, old world vultures, and other Accipitridae based on nuclear and mitochondrial DNA. Mol Phyl Evol 37:327–346

    Article  CAS  Google Scholar 

  24. Lerner HRL, Klaver MC, Mindell DP (2008) Molecular phylogenetics of the Buteonine birds of prey (Accipitridae). Auk 304:304–315

    Article  Google Scholar 

  25. Louette M (2002) Relationships of the red-thighed sparrowhawk Accipiter erythropus and the African Little Sparrowhawk A. minullus. Bull Brit Ornith Club 122:218–222

    Google Scholar 

  26. Louette M (2003) The endemic Ethiopian race of the African Goshawk. Bull Afr Bird Club 10:118–119

    Google Scholar 

  27. Louette M (2007a) Comparative biology of the forest-inhabiting hawks Accipiter spp. in the Democratic Republic of Congo. Ostrich 78:21–28

    Article  Google Scholar 

  28. Louette M (2007b) The variable morphology of the African goshawk (Accipiter tachiro). Ostrich 78:387–393

    Article  Google Scholar 

  29. Louette M, Herremans M (1985) Taxonomy and evolution in the bulbuls (Hypsipetes) on the Comoro Islands. In: Proc Int Symp African Vertebrates, Bonn, West Germany, 15–18 May 1984, pp 407–423

  30. Louette M, Herremans M, Nagy ZT, René de Roland L-A, Jordaens K, Van Houdt J, Sonet G, Breman FC (2011) Frances’ Sparrowhawk Accipiter francesiae (Aves: Accipitridae) radiation on the Comoro Islands. Bonner Zool Monogr 57:133–143

  31. Mayr E (1949) Geographical variation in Accipiter trivirgatus. Am Mus Novitat 1415:1–12

    Google Scholar 

  32. Mayr G, Manegold A, Johansson US (2003) Monophyletic groups within “higher land birds”—comparison of morphological and molecular data. J Zool Syst Evol Res 41:233–248

    Google Scholar 

  33. Meier CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:e422

    Article  Google Scholar 

  34. Meier R, Shiyang K, Vaidya G, Ng PKL (2006) DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55:715–728

    PubMed  Article  Google Scholar 

  35. Meusnier I, Singer GAC, Landry J-F, Hickey DA, Hebert PDN, Hajibabei M (2008) A universal DNA mini-barcode for biodiversity analysis. BMC Genom 9:214

    Article  Google Scholar 

  36. Ong PS, Luczon AU, Quilang JP, Sumaya AM, Ibañez JC, Salvador DJ, Fontanilla IKC (2011) DNA barcoding of Philippine accipitrids. Mol Ecol Res 11:245–254

    Article  CAS  Google Scholar 

  37. Pagès M, Chaval Y, Herbretaus V, Waengsothorn S, Cosson J-F, Hugot J-P, Morand S, Michaux J (2010) Revisiting the taxonomy of the Rattini tribe: a phylogeny-based delimitatation of species boundaries. BMC Evol Biol 10:184

    PubMed  Article  Google Scholar 

  38. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    PubMed  Article  CAS  Google Scholar 

  39. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    PubMed  Article  CAS  Google Scholar 

  40. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  41. Rach J, DeSalle R, Sarkar IN, Schierwater B, Hadrys H (2008) Character based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proc R Soc Lond B 275:237–247

    Article  CAS  Google Scholar 

  42. Rambaut A, Drummond AJ (2009) Tracer v1.5. Available from http://beast.bio.ed.ac.uk/Tracer

  43. Ranker TA, Geiger JMO, Kennedy SC, Smith AR, Haufler CH, Paris BS (2003) Molecular phylogenetics and evolution of the endemic Hawaiian genus Adenophorus (Grammitidaceae). Mol Phylogen Evol 26:337–347

    Article  CAS  Google Scholar 

  44. Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system (www.barcodinglife.org). Mol Ecol Notes 7:355–364

    PubMed  Article  CAS  Google Scholar 

  45. Reynard GB, Short LL, Garrido OH, Alayón G (1987) Nesting, voice, status, and relationships of the endemic Cuban Gundlach’s Hawk (Accipiter gundlachi). Wilson Bull 99:73–77

    Google Scholar 

  46. Riegner MF (2008) Parallel evolution of plumage pattern and coloration in birds: implications for defining avian morphospace. Condor 110:599–614

    Article  Google Scholar 

  47. Rodríguez-Santana F (2010) Reports of Cooper’s hawks (Accipiter cooperii), Swainson’s hawk (Buteo swainsoni) and Short-tailed hawks (Buteo brachyurus) in Cuba. J Raptor Res 44:146–150

    Article  Google Scholar 

  48. Ronquist F, Huelsenbeck JP (2003) MrBayes3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    PubMed  Article  CAS  Google Scholar 

  49. Ross HA, Murugan S, Sibon Li WL (2008) Testing the reliability of genetic methods of species identification via simulation. Syst Biol 57:216–230

    PubMed  Article  Google Scholar 

  50. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  51. Snow DW (1978) An atlas of speciation of African non-passerine birds. Trustees of the British Museum (Natural History), London

  52. Sonet G, Breman FC, Jordaens K, Lenglet G, Louette M, Montañés G, Nagy ZT, Van Houdt J, Verheyen E (2011) Applicability of DNA barcoding to museum specimens of birds from the Democratic Republic of the Congo. Bonner Zool Monogr 57:117–131

    Google Scholar 

  53. Stresemann E (1923) Ueber einige Accipiter-Arten. Journal für Ornithologie 71:517–525

    Article  Google Scholar 

  54. Stresemann E, Amadon D (1979) Falconiformes. In: Mayr E, Cottrell GW (eds) Check-list of birds of the world, vol 1, 2nd edn. Museum of Comparative Zoology, Cambridge, pp 274–425

    Google Scholar 

  55. Swann HK (1922) A synopsis of the Accipitres (diurnal birds of prey), 2nd edn. Wheldon & Wesley, London

  56. Swofford DL (2002) PAUP* phylogenetic analysis using parsimony (*and other methods), version 4b10. Sinauer Associates, Sunderland

  57. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Google Scholar 

  58. Tavares ES, Baker AJ (2008) Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds. BMC Evol Biol 8:81

    PubMed  Article  Google Scholar 

  59. Thiollay SM (1994) Accipiter. In: del Hoyo J, Elliott A, Sargatal JP (eds) Handbook of the birds of the world, New World vultures to guineafowl, vol 2. Lynx, Barcelona

  60. Vaurie C (1961) Systematic notes on palearctic birds. No. 46. Accipitridae: the genus Accipiter. Am Mus Novitat 2039:1–10

  61. Virgilio M, Backeljau T, Nevado B, De Meyer M (2010) Comparative performances of DNA barcoding across insect orders. BMC Bioinf 11:206

    Article  Google Scholar 

  62. Ward RD, Costa FO, Holmes BH, Steinke D (2008) DNA barcoding shared fish species from the North Atlantic and Australasia: minimal divergence for most taxa but likely two species for Zeus faber (john dory) and Lepidopus caudatus (silver scabbardfish). Aquat Biol 3:71–78

    Article  Google Scholar 

  63. Wattel J (1973) Geographical differentiation in the genus Accipiter. Publ Nuttall Ornithol Club 13:1–231

    Google Scholar 

  64. Wink M, Sauer-Gürth H (2000) Advances in molecular systematics of African raptors. In: Chancellor RD, Meyburg BU (eds) Raptors at risk. WWGBP/Hancock House, Berlin, pp 135–147

    Google Scholar 

  65. Wink M, Sauer-Gürth H (2004) Phylogenetic relationships in diurnal raptors based on nucleotide sequences of mitochondrial and nuclear marker genes. In: Chancellor RD, Meyburg BU (eds) Raptors at risk. WWGBP/Hancock House, Berlin, pp 483–498

    Google Scholar 

  66. Yassin A, Amedegnato C, Cruaud C, Veuille M (2009) Molecular taxonomy and species delimitation in Andean Schistocerca (Orthoptera: Acrididae). Mol Phylogen Evol 53:404–411

    Article  CAS  Google Scholar 

  67. Yoo HS, Eah J-Y, Kim JS, Kim Y-J, Min M-S, Paek WK, Lee H, Kim C-B (2006) DNA barcoding Korean birds. Mol Cells 22:323–327

    PubMed  CAS  Google Scholar 

  68. Yosef R, Helbig AJ, Clark WS (2001) An intrageneric Accipiter hybrid from Eilat, Israel. Sandgrouse 23:141–144

    Google Scholar 

Download references

Acknowledgments

This work would have been impossible without the help of many people we would like to thank: everybody who collected samples, cut toe pads, identified specimens, and kindly allowed us to access their collections. We thank Gerhard Aubrecht (Ober-Österreichische Landesmuseen, Linz Austria), Marieke Berkvens (Wuustwezel, Belgium), Charles Botha (South Africa), Sebastien Bruaux (RBINS), Kizungu Byamana (Lwiro, DR Congo), Chang Yuong Choi (Migratory Bird Centre of the Korean National Park Service, South Korea), Stijn Cooleman (RMCA), S. Viñas & Lellani Fariñes Crespo (RMCA), Réné De Roland Lily Arison (Peregrine Fund, Madagascar), Renate van den Elzen (Zoologisches Forschungsmuseum Koenig, Bonn, Germany), Clem Fisher (World Museum, Liverpool, UK), Jon Fjeldså (University of Copenhagen Zoological Museum, Denmark), Marc Herremans (Mechelen, Belgium), Jon Bolding Kristensen (University of Copenhagen Zoological Museum, Denmark), Georges Lenglet (RBINS), Danny Meirte (RMCA), Jürgen Plass (Ober-Österreichische Landesmuseen, Linz, Austria), Alain Reygel (RMCA), Lucia Liu Severinghaus (The Biodiversity Research Museum Taiwan, Taiwan), Erik Verheyen (RBINS), Malcolm Wilson (South Africa), and Reuven Yosef (International Birding & Research Centre, Eilat, Israel). We further thank two anonymous referees for their valuable comments. All experiments complied with the laws of Belgium.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Floris C. Breman.

Additional information

Communicated by M. Wink.

Electronic supplementary material

Appendices

Appendix 1

See Table 2.

Table 2 List of specimens and GenBank and BOLD accession numbers used in this study

Appendix 2

See Table 3.

Table 3 Mean intra- (diagonal and in bold) and interspecific pairwise K2P distances among 25 Accipiter species of (a) dataset A, and among 18 species of (b) dataset B and (c) dataset C

Appendix 3

See Fig. 6.

Fig. 6
figure6

Some examples of nucleotide character that were diagnostic for a species (sensu Rach et al. 2008). The top row of numbers gives the bp postions in the aligned 647 bp barcode fragment. The bottom row indicates whether the given position was located at the first, second, or third codon position

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Breman, F.C., Jordaens, K., Sonet, G. et al. DNA barcoding and evolutionary relationships in Accipiter Brisson, 1760 (Aves, Falconiformes: Accipitridae) with a focus on African and Eurasian representatives. J Ornithol 154, 265–287 (2013). https://doi.org/10.1007/s10336-012-0892-5

Download citation

Keywords

  • Accipiter
  • Archival DNA
  • COI
  • DNA barcoding
  • Molecular phylogeny
  • Taxonomy