Journal of Ornithology

, Volume 154, Issue 1, pp 129–138 | Cite as

Sperm length variation in House Wrens Troglodytes aedon

  • Emily R. A. CramerEmail author
  • Terje Laskemoen
  • Oddmund Kleven
  • Jan T. Lifjeld
Original Article


It is well documented that sperm size and structure varies considerably among avian species, but we know much less about the extent of intraspecific variation in sperm morphometry and its possible co-variation with somatic traits like body size and condition. Here, we investigate patterns of sperm length variation and co-variation in a population of House Wrens (Troglodytes aedon). Total sperm length showed considerable between-male variation, with high repeatability between seasons indicative of a strong genetic basis for this trait. However, we also detected a seasonal increase in the flagellum:head length ratio, which might indicate phenotypic plasticity or adjustment in the relative size of sperm components. The variation in total sperm length within an ejaculate sample was higher for males sampled very early in the season, which may reflect more heterogeneity in the size of seminiferous tubules when testes are growing. None of the studied sperm morphometry traits correlated significantly with any measures of male body size or physiological condition. Further studies are needed to reveal if the observed individual variation in sperm morphology plays any functional or adaptive role.


Sperm morphology Sperm competition Body condition House Wren Seasonality 


Variation in der Spermienlänge von Hauszaunkönigen ( Troglodytes aedon )

Obwohl sehr viel über die Variation in Spermiengröße und –struktur zwischen Vogelarten bekannt ist, wissen wir verhältnismäßig weniger über innerartliche Variation in der Morphologie von Spermien sowie über die mögliche Kovarianz zwischen Körpergröße und Kondition. Hier untersuchen wir Muster in der Variation und Kovarianz von Spermienlänge in Hauszaunkönigen (Troglodytes aedon). Wir fanden relative viel Variation in der Spermienlänge zwischen Männchen, wobei eine hohe Ähnlichkeit zwischen Jahren auf eine mögliche genetische Basis hinweist. Wir haben außerdem eine Zunahme des Verhältnisses von Flagellum zu Kopf über die Saison hinweg beobachten können, was möglicherweise auf phänotypische Plastizität in der relativen Größe von verschiedenen morphologischen Komponenten von Spermien hinweist. Die Variation in absoluter Spermienlänge innerhalb einer Ejakulatprobe war höher für Männchen die früh in der Saison beprobt wurden, was möglicherweise auf mehr Heterogenität in der Größe der Hodenkanälchen während der Wachstumsphase der Hoden hinweist. Keine der untersuchten morphologischen Merkmale der Spermien korrelierte statistisch signifikant mit der Körpergröße oder der physiologischen Kondition der Männchen. Weitere Untersuchungen sind notwendig um herauszufinden ob die hier beschrieben Variation in der Morphologie von Spermien wichtig für Funktion und Adaptation ist.



We thank Cornell University Research Ponds for access to the field site, field assistants (Eileen McIver, Katie Baird, Noelle Chaine, Natalie Koscal, and Carly Hodes) and others (Paulo Llambías, Taza Schaming, Katie LaBarbera, Kim Bostwick, Charles Dardia, and Irby Lovette and the Evolutionary Biology Lab) for field and logistical support; Elaina Tuttle, Stephen Pruett-Jones, Emma Greig, anonymous reviewers, and the Cornell Behavior Journal Club for feedback on the manuscript and data interpretation; Sandy Vehrencamp for support throughout; and Bob Doran and the Paula Cohen lab for microscope assistance in the USA. Funding was provided by grants from the Animal Behavior Society, American Ornithologists’ Union, Cornell Department of Neurobiology and Behavior, Cornell University Sigma Xi Chapter, as well as a donation to the Cornell Lab of Ornithology from the Kramer family and a National Science Foundation (USA) Graduate Research Fellowship and Nordic Research Opportunity Fellowship. T.L., O.K. and J.T.L. were supported by a grant from the Research Council of Norway. This study was approved by the Cornell University Institutional Animal Care and Use Committee, and complied with the current laws in Norway and the USA.


  1. Aire TA (2007a) Anatomy of the testis and male reproductive tract. In: Jamieson BGM (ed) Reproductive biology and phylogeny of birds, vol 6A. Science Publishers, Enfield, New Hampshire, pp 37–114Google Scholar
  2. Aire TA (2007b) Spermatogenesis and testicular cycles. In: Jamieson BGM (ed) Reproductive biology and phylogeny of birds, vol 6A. Science Publishers, Enfield, New Hampshire, pp 279–347Google Scholar
  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57:289–300Google Scholar
  4. Birkhead TR, Pizzari T (2002) Postcopulatory sexual selection. Nat Rev 3:262–273CrossRefGoogle Scholar
  5. Birkhead TR, Pellatt EJ, Brekke P, Yeates R, Castillo-Juarez H (2005) Genetic effects on sperm design in the zebra finch. Nature 434:383–387PubMedCrossRefGoogle Scholar
  6. Briskie JV, Montgomerie R, Birkhead TR (1997) The evolution of sperm size in birds. Evolution 51:937–945CrossRefGoogle Scholar
  7. Burness G, Schulte-Hostedde AI, Montgomerie R (2008) Body condition influences sperm energetics in lake whitefish (Coregonus clupeaformis). Can J Fish Aquat Sci 65:615–620CrossRefGoogle Scholar
  8. Calhim S, Birkhead T (2007) Testes size in birds: quality versus quantity–assumptions, errors, and estimates. Behav Ecol 18:271–275CrossRefGoogle Scholar
  9. Calhim S, Immler S, Birkhead TR (2007) Postcopulatory sexual selection is associated with reduced variation in sperm morphology. PLoS One 2(5):e413PubMedCrossRefGoogle Scholar
  10. Cardullo RA, Baltz JM (1991) Metabolic regulation in mammalian sperm: mitochondrial volume determines sperm length and flagellar beat frequency. Cell Motil Cytoskel 19:180–188CrossRefGoogle Scholar
  11. Cohen J (1967) Correlation between sperm “redundancy” and chiasma frequency. Nature 215:862–863PubMedCrossRefGoogle Scholar
  12. Dewsbury DA (1982) Ejaculate cost and male choice. Am Nat 119:601–610CrossRefGoogle Scholar
  13. Froman DP, Kirby JD (2005) Sperm mobility: phenotype in roosters (Gallus domesticus) determined by mitochondrial function. Biol Reprod 72:562–567PubMedCrossRefGoogle Scholar
  14. Froman DP, Pizzari T, Feltmann AJ, Castillo-Juarez H, Birkhead TR (2002) Sperm mobility: mechanisms of fertilizing efficiency, genetic variation and phenotypic relationship with male status in the domestic fowl, Gallus gallus domesticus. Proc R Soc Lond B 269:607–612CrossRefGoogle Scholar
  15. García-Berthou E (2001) On the misuse of residuals in ecology: testing regression residuals versus the analysis of covariance. J Anim Ecol 70:708–711Google Scholar
  16. Helfenstein F, Szep T, Nagy Z, Kempenaers B, Wagner RH (2008) Between-male variation in sperm size, velocity and longevity in sand martins Riparia riparia. J Avian Biol 39:647–652CrossRefGoogle Scholar
  17. Helfenstein F, Losdat S, Møller AP, Blount JD, Richner H (2010a) Sperm of colourful males are better protected against oxidative stress. Ecol Lett 13:213–222PubMedCrossRefGoogle Scholar
  18. Helfenstein F, Podevin M, Richner H (2010b) Sperm morphology, swimming velocity, and longevity in the house sparrow Passer domesticus. Behav Ecol Sociobiol 64:557–565CrossRefGoogle Scholar
  19. Humphreys PN (1972) Brief observations on the semen and spermatozoa of certain passerine and non-passerine birds. J Reprod Fert 29:327–336CrossRefGoogle Scholar
  20. Humphries S, Evans JP, Simmons LW (2008) Sperm competition: linking form to function. BMC Evol Biol 8:319PubMedCrossRefGoogle Scholar
  21. Immler S, Birkhead TR (2007) Sperm competition and sperm midpiece size: no consistent pattern in passerine birds. Proc R Soc Lond B 274:561–568CrossRefGoogle Scholar
  22. Immler S, Calhim S, Birkhead TR (2008) Increased postcopulatory sexual selection reduces the intramale variation in sperm design. Evolution 62:1538–1543PubMedCrossRefGoogle Scholar
  23. Immler S, Pryke SR, Birkhead TR, Griffith SC (2010) Pronounced within-individual plasticity in sperm morphometry across social environments. Evolution 64:1634–1643PubMedCrossRefGoogle Scholar
  24. Johnson LS, Hicks BG, Masters BS (2002) Increased cuckoldry as a cost of breeding late for male house wrens (Troglodytes aedon). Behav Ecol 13:670–675CrossRefGoogle Scholar
  25. Kleven O, Laskemoen T, Fossøy F, Robertson RJ, Lifjeld JT (2008) Intraspecific variation in sperm length is negatively related to sperm competition in passerine birds. Evolution 62:494–499PubMedCrossRefGoogle Scholar
  26. Kleven O, Fossøy F, Laskemoen T, Robertson RJ, Rudolfsen G, Lifjeld JT (2009a) Comparative evidence for the evolution of sperm swimming speed by sperm competition and female sperm storage duration in passerine birds. Evolution 63:2466–2473PubMedCrossRefGoogle Scholar
  27. Kleven O, Laskemoen T, Lifjeld JT (2009b) Sperm length in sand martins Riparia riparia: a comment on Helfenstein et al. J Avian Biol 40:241–242CrossRefGoogle Scholar
  28. Knudsen J (2009) Sperm production and variance in sperm quality. Master’s thesis, Queen’s University, KingstonGoogle Scholar
  29. Koehler LD (1995) Diversity of avian spermatozoa ultrastructure with emphasis on the members of the order Passeriformes. Mem Mus Natn Hist Nat 166:437–444Google Scholar
  30. LaBarbera K, Llambías PE, Cramer ERA, Schaming TD, Lovette IJ (2010) Synchrony does not explain extrapair paternity rate variation in northern or southern house wrens. Behav Ecol 21:773–780CrossRefGoogle Scholar
  31. Laskemoen T, Fossøy F, Rudolfsen G, Lifjeld JT (2008) Age-related variation in primary sexual characters in a passerine with male age-related fertilization success, the bluethroat Luscinia svecica. J Avian Biol 39:322–328CrossRefGoogle Scholar
  32. Laskemoen T, Kleven O, Fossøy F, Robertson RJ, Rudolfsen G, Lifjeld JT (2010) Sperm quantity and quality effects on fertilization success in a highly promiscuous passerine, the tree swallow Tachycineta bicolor. Behav Ecol Sociobiol 64:1473–1483CrossRefGoogle Scholar
  33. Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121CrossRefGoogle Scholar
  34. Lifjeld JT, Laskemoen T, Kleven O, Albrecht T, Robertson RJ (2010) Sperm length variation as a predictor of extrapair paternity in passerine birds. PLoS One 5:e13456PubMedCrossRefGoogle Scholar
  35. Lifjeld JT, Laskemoen T, Kleven O, Pedersen ATM, Lampe HM, Rudolfsen G, Schmoll T, Slagsvold T (2012) No evidence for pre-copulatory sexual selection on sperm length in a passerine bird. PLoS One 7:e32611PubMedCrossRefGoogle Scholar
  36. Lüpold S, Calhim S, Immler S, Birkhead TR (2009a) Sperm morphology and sperm velocity in passerine birds. Proc R Soc Lond B 276:1175–1181CrossRefGoogle Scholar
  37. Lüpold S, Linz GM, Birkhead TR (2009b) Sperm design and variation in the New World blackbirds (Icteridae). Behav Ecol Sociobiol 63:899–909CrossRefGoogle Scholar
  38. Lüpold S, Linz GM, Rivers JW, Westneat DF, Birkhead TR (2009c) Sperm competition selects beyond relative testes size in birds. Evolution 63:391–402PubMedCrossRefGoogle Scholar
  39. Lüpold S, Westneat DF, Birkhead TR (2011) Geographical variation in sperm morphology in the red-winged blackbird (Agelaius phoeniceus). Evol Ecol 25:373–390CrossRefGoogle Scholar
  40. Millet S, Bennett J, Lee KA, Hau M, Klasing KC (2007) Quantifying and comparing constitutive immunity across avian species. Dev Comp Immunol 31:188–201PubMedCrossRefGoogle Scholar
  41. Møller AP (1991) Sperm competition, sperm depletion, paternal care, and relative testis size in birds. Am Nat 137:882–906CrossRefGoogle Scholar
  42. Møller AP, Mousseau TA, Rudolfsen G, Balbontín J, Marzal A, Hermosell I, De Lope F (2009) Senescent sperm performance in old male birds. J Evol Biol 22:334–344Google Scholar
  43. Mossman J, Slate J, Humphries S, Birkhead TR (2009) Sperm morphology and velocity are genetically codetermined in the zebra finch. Evolution 63:2730–2737PubMedCrossRefGoogle Scholar
  44. Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev 85:935–956PubMedGoogle Scholar
  45. Ots I, Murumägi A, Hõrak P (1998) Haematological health state indices of reproducing great tits: methodology and sources of natural variation. Funct Ecol 12:700–707CrossRefGoogle Scholar
  46. Parker GA, Begon ME (1993) Sperm competition games: sperm size and number under gametic control. Proc R Soc Lond B 253:255–262CrossRefGoogle Scholar
  47. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  48. Rowe M, Swaddle JP, Pruett-Jones S, Webster MS (2010) Plumage coloration, ejaculate quality and reproductive phenotype in the red-backed fairy wren. Anim Behav 79:1239–1246CrossRefGoogle Scholar
  49. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113CrossRefGoogle Scholar
  50. Schmoll T, Kleven O (2011) Sperm dimensions differ between two coal tit Periparus ater populations. J Ornithol 152:515–520CrossRefGoogle Scholar
  51. Tieleman BI, Dijkstra TH, Klasing KC, Visser GH, Williams JB (2008) Effects of experimentally increased costs of activity during reproduction on parental investment and self-maintenance in tropical house wrens. Behav Ecol 19:949–959CrossRefGoogle Scholar
  52. Tuttle EM, Pruett-Jones S, Webster MS (1996) Cloacal protuberances and extreme sperm production in Australian fairy-wrens. Proc R Soc Lond B 263:1359–1364CrossRefGoogle Scholar
  53. Verhoeven KJF, Simonsen KL, McIntyre LM (2005) Implementing false discovery rate control: increasing your power. Oikos 108:643–647CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2012

Authors and Affiliations

  • Emily R. A. Cramer
    • 1
    Email author
  • Terje Laskemoen
    • 2
  • Oddmund Kleven
    • 2
    • 3
  • Jan T. Lifjeld
    • 2
  1. 1.Department of Neurobiology and BehaviorCornell UniversityIthacaUSA
  2. 2.National Centre for Biosystematics, Natural History MuseumUniversity of OsloOsloNorway
  3. 3.Norwegian Institute for Nature ResearchTrondheimNorway

Personalised recommendations