Journal of Ornithology

, Volume 154, Issue 1, pp 99–105 | Cite as

Patterns of acceptance of artificial eggs and chicks by Magellanic Penguins (Spheniscus magellanicus)

  • Eric L. WagnerEmail author
  • Eleanor J. Lee
  • P. Dee Boersma
Original Article


Life history theory predicts that parents will not raise unrelated offspring. For seabirds, an ability to recognize their own eggs and chicks can prevent a costly mistake. We tested whether Magellanic Penguins (Spheniscus magellanicus) would discriminate against artificial eggs by presenting nine types of egg-objects and one type of artificial chick to penguins at their nests. Magellanic Penguins regardless of their sex or breeding status accepted all egg-objects. A generalized linear mixed model showed that mass and number of dimensions were the most important factors in predicting whether the object was accepted: flat egg-objects and light egg-objects were less likely to be incubated than round, normally weighted ones. We also tested whether Magellanic Penguins would retrieve egg-objects more frequently if the object was within 1 m of the nest cup. Penguins retrieved 75 % of objects that were 1 m from the nest cup, but only 25 % of objects that were 2 m from the nest cup. Lastly, we tested whether penguins would accept artificial chicks. We found that pairs with chicks less than 3 weeks of age (i.e., not out of the guard stage) were at least twice as likely to brood an artificial chick than pairs with chicks older than 3 weeks, pairs that had lost their chicks, or unmated males.


Egg recognition Chick recognition Spheniscus magellanicus 


Akzeptanz von Ei-Attrappen und künstlichen Küken bei Magellanpinguinen ( Spheniscus magellanicus )

Die Life-History-Theorie geht von der Annahme aus, dass Eltern keine nicht mit ihnen verwandten Jungen aufziehen. Die Fähigkeit, die eigenen Eier und Küken zu erkennen, kann bei Seevögeln kostspieligen Irrtümern vorbeugen. Wir untersuchten, ob Magellan pinguine (Spheniscus magellanicus) Ei-Attrappen als solche erkennen und unterscheiden können und boten dazu den Pinguinen am Nest neun verschiedene Arten eiförmiger Objekte sowie ein künstliches Küken an. Unabhängig von Geschlecht oder Brutstatus akzeptierten die Magellanpinguine alle eiförmigen Objekte. Ein generalisiertes lineares gemischtes Modell zeigte, dass die Masse sowie die Anzahl der Dimensionen die Hauptfaktoren dafür darstellten, ob das Objekt angenommen wurde: Flache oder leichte Ei-Attrappen wurden mit geringerer Wahrscheinlichkeit bebrütet als runde, normalgewichtige. Wir untersuchten ebenfalls, ob Magellanpinguine die Ei-Attrappen häufiger ins Nest zurückrollten, wenn sich das Objekt im Umkreis von einem Meter zur Nestmulde befand. Die Pinguine holten 75 % der Objekte, die sich im Abstand von einem Meter befanden, in die Nestmulde zurück, dagegen nur 25 % der Objekte, die zwei Meter vom Nest entfernt lagen. Abschließend untersuchten wir noch, ob die Pinguine künstliche Küken annehmen. Es stellte sich heraus, dass Paare mit Küken, die jünger waren als drei Wochen (d. h. während der Bewachungsphase) mit mindestens doppelt so hoher Wahrscheinlichkeit ein künstliches Küken bebrüteten als Paare mit Küken, welche älter als drei Wochen waren, Paare, die ihre Küken verloren hatten, oder unverpaarte Männchen.



This study was funded by The Penguin Project, sponsored by the Wildlife Conservation Society (WCS) and the University of Washington, Exxon-Mobil Foundation, Disney Wildlife Conservation Fund, National Geographic Society, the Chase, Cunningham, MKCG, Offield, Peach, Thorne, and Kellogg foundations, the Wadsworth Endowed Chair in Conservation Science, and Friends of the Penguins. The research was carried out under a joint agreement between WCS and the Office of Tourism, Province of Chubut, Argentina. We thank the Province of Chubut and the La Regina family for access to the penguin colony. Thanks to Jennifer Ruesink, Brian Walker, and two anonymous reviewers for very helpful comments that improved the manuscript.


  1. Angelier F, Barbraud C, Lormeé H, Prud’homme F, Chastel O (2009) Kidnapping of chicks in emperor penguins: a hormonal by-product? J Exp Biol 209:1413–1420CrossRefGoogle Scholar
  2. Auben T, Jouventin P (2002) How to vocally identify kin in a crowd: the penguin model. Adv Stud Behav 31:243–263CrossRefGoogle Scholar
  3. Beecher MD, Stoddard PK, Loesche P (1985) Recognition of parents’ voices by young cliff swallows. Auk 102:600–605Google Scholar
  4. Beer CG (1979) Vocal communication between laughing gull parents and chicks. Behaviour 70:118–146CrossRefGoogle Scholar
  5. Birkhead TR (1978) Behavioral adaptation to high nesting density in the common guillemot (Uria aalge). Anim Behav 26:321–331CrossRefGoogle Scholar
  6. Boersma PD, Rebstock GA (2009) Intraclutch egg-size dimorphism in Magellanic penguins (Spheniscus magellanicus): adaptation, constraint, or noise? Auk 126:335–340CrossRefGoogle Scholar
  7. Boersma PD, Stokes DL, Yorio PM (1990) Reproductive variability and historical change of Magellanic penguins (Spheniscus magellanicus) at Punta Tombo, Argentina. In: Davis LS, Darby JT (eds) Penguin biology. Academic, San Diego, pp 15–43Google Scholar
  8. Brown KM (1998) Proximate and ultimate causes of adoption in ring-billed gulls. Anim Behav 56:1529–1543PubMedCrossRefGoogle Scholar
  9. Buckley PA, Buckley FG (1972) Individual egg and chick recognition by adult royal terns (Sterna maxima). Anim Behav 20:457–462CrossRefGoogle Scholar
  10. Buntin JD (1996) Neural and hormonal control of parental behaviour in birds. Adv Stud Behav 25:161–213CrossRefGoogle Scholar
  11. Clark JA, Boersma PD, Olmsted DM (2006) Name that tune: call discrimination and individual recognition in Magellanic penguins. Anim Behav 72:1141–1148CrossRefGoogle Scholar
  12. Conover MR (1985) Foreign objects in bird nests. Auk 102:696–700Google Scholar
  13. Davies SJ, Carrick R (1962) On the ability of crested terns, Sterna breggi, to recognize their own chick. Aust J Zoo 10:171–177CrossRefGoogle Scholar
  14. Davis LS, McCaffrey FT (1989) Recognition and parental investment in Adélie penguins. Emu 89:155–158CrossRefGoogle Scholar
  15. Fredrickson LH, Weller MW (1972) Responses of Adélie penguins to colored eggs. Wilson Bull 84:309–314Google Scholar
  16. Friesen VL, Montevecchi WA, Barrett RT, Davidson WS (1996) Molecular evidence for kin groups in the absence of large-scale genetic differentiation in a migratory bird. Evolution 50:924–930CrossRefGoogle Scholar
  17. Gaston AJ, DeForest LN, Noble DG (1993) Egg recognition and egg stealing in murres (Uria spp.). Anim Behav 45:301–306CrossRefGoogle Scholar
  18. Gaston AJ, Eberl C, Hipfner M, Lefevre K (1995) Adoption of chicks among thick-billed murres. Auk 112:508–510CrossRefGoogle Scholar
  19. Goldsmith AR (1991) Prolactin and avian reproductive strategies. Proc Int Ornithol Congr Ornithol 20(4):2063–2071Google Scholar
  20. Hood LC, Boersma PD, Wingfield JC (1998) The adrenocortical response to stress in incubating Magellanic penguins (Spheniscus magellanicus). Auk 115:76–84CrossRefGoogle Scholar
  21. Jouventin P, Barbraud C, Rubin M (1995) Adoption in emperor penguins Aptendodytes forsteri. Anim Behav 50:1023–1029CrossRefGoogle Scholar
  22. Lyon BE, Eadie JM (2008) Conspecific brood parasitism in birds: a life-history perspective. Annu Rev Ecol Evol Syst 39:343–363CrossRefGoogle Scholar
  23. Massaro M, Setiawan AN, Davis LS (2007) Effects of artificial eggs on prolactin secretion, steroid levels, brood patch development, incubation onset and clutch size in the yellow-eyed penguin (Megadyptes antipodes). Gen Comp Endocrinol 15:220–229CrossRefGoogle Scholar
  24. Nimon AJ, Schroter RC, Oxenham RKC (1996) Artificial eggs: measuring heart rate and effects of disturbance in nesting penguins. Phys Behav 60:1019–1022Google Scholar
  25. Oosthuizen WC, Nico de Bruyn PJ (2009) King penguin brooding and defending a sub-Antarctic skua chick. Polar Biol 32:302–305CrossRefGoogle Scholar
  26. Poulsen H (1953) A study of incubation responses and some other behavior patterns in birds. Vidensk Medd Dan Naturhist Foren 115:1–131Google Scholar
  27. Prevett JP, Prevett NS (1973) Egg retrieval by blue geese. Auk 90:202–204Google Scholar
  28. Rafferty NE, Boersma PD, Rebstock GA (2005) Intraclutch egg-size variation in Magellanic penguins. Condor 107:923–928CrossRefGoogle Scholar
  29. Rebstock GA, Boersma PD (2011) Parental behavior controls incubation period and asynchrony of hatching Magellanic penguins. Condor 113:316–325CrossRefGoogle Scholar
  30. Reid WR, Boersma PD (1990) Parental quality and selection on egg size in the Magellanic penguin. Evolution 44:1780–1786CrossRefGoogle Scholar
  31. Renison D, Boersma PD, Martella M (2002) Winning and losing: causes for variability in outcome of fights in male Magellanic penguins (Spheniscus magellanicus). Behav Ecol 13:462–466CrossRefGoogle Scholar
  32. Richardson F (1967) Black tern nest and egg moving experiments. Murrelet 48:52–56CrossRefGoogle Scholar
  33. Riska DE (1984) Experiments in nestling recognition in brown noddies (Anous stolidus). Auk 101:605–609Google Scholar
  34. Rothstein SI (1990) A model system for coevolution: avian brood parasitism. Annu Rev Ecol Syst 21:481–508CrossRefGoogle Scholar
  35. Sears HF (1978) Nesting behavior of the gull-billed tern. Bird-Banding 49:1–16CrossRefGoogle Scholar
  36. Setiawan AN, Davis LS, Darby JT, Loman PM, Young G, Blackberry MA, Cannell BL, Martin GB (2007) Effects of artificial social stimuli on reproductive schedule and hormone levels of yellow-eyed penguins (Megadyptes antipodes). Horm Behav 51:46–53PubMedCrossRefGoogle Scholar
  37. Shugart GW (1987) Individual clutch recognition by Caspian terns (Sterna caspia). Anim Behav 35:1563–1565CrossRefGoogle Scholar
  38. Stearns SC (1976) Life-history tactics: a review of the ideas. Q Rev Biol 51:3–47PubMedCrossRefGoogle Scholar
  39. Stoddard PK, Beecher MD (1983) Parental recognition of offspring in the cliff swallow. Auk 100:795–799Google Scholar
  40. Stokes DL, Boersma PD (1991) Effects of substrate on the distribution of Magellanic penguins (Spheniscus magellanicus). Auk 108:923–933CrossRefGoogle Scholar
  41. Stokes DL, Boersma PD (1998) Nest-site characteristics and reproductive success in Magellanic penguins (Spheniscus magellanicus). Auk 115:24–49CrossRefGoogle Scholar
  42. Stokes DL, Boersma PD (2000) Nesting density and reproductive success in a colonial seabird, the Magellanic penguin. Ecology 81:2878–2891CrossRefGoogle Scholar
  43. Taylor RH (1962) The Adélie penguin Pygoscelis adeliae at Cape Royds. Ibis 104:176–204CrossRefGoogle Scholar
  44. Tenaza R (1971) Behavior and nesting success relative to nest location in Adélie penguins. Condor 73:81–92CrossRefGoogle Scholar
  45. Tinbergen N (1951) The study of instinct. Oxford University Press, OxfordGoogle Scholar
  46. Tinbergen N (1958) Curious naturalists. The University of Massachusetts Press, AmherstGoogle Scholar
  47. Tinbergen N (1960) The Herring Gull’s world. Harper, New YorkGoogle Scholar
  48. Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man. Aldine, Chicago, pp 136–179Google Scholar
  49. Vleck CM, Bucher TL, Reed WL, Kristmonsdottir AY (1999) Changes in reproductive hormones and body mass through the reproductive cycle in the Adelie penguin (Pygoscelis adeliae), with associated data on courting-only individuals. In: Adams N, Slowtow R (eds) Proc Int Ornithol Cong 22:1210–1223Google Scholar
  50. Volkman NJ, Trivelpiece W (1981) Nest-site selection among Adelie, chinstrap, and Gentoo penguins in mixed species rookeries. Wilson Bull 93:243–248Google Scholar
  51. Yorio P, Boersma PD (1992) Consequences of nest desertion and inattendance for Magellanic penguin hatching success. Auk 111:215–218CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2012

Authors and Affiliations

  • Eric L. Wagner
    • 1
    Email author
  • Eleanor J. Lee
    • 1
  • P. Dee Boersma
    • 1
  1. 1.University of WashingtonSeattleUSA

Personalised recommendations