Journal of Ornithology

, Volume 154, Issue 1, pp 41–50 | Cite as

Connections between the Atlantic and the Amazonian forest avifaunas represent distinct historical events

  • Henrique Batalha-FilhoEmail author
  • Jon Fjeldså
  • Pierre-Henri Fabre
  • Cristina Yumi Miyaki
Original Article


There is much evidence to support past contact between the Atlantic and the Amazon forests through the South American dry vegetation diagonal, but the spatiotemporal dynamics of this contact still need to be investigated to allow a better understanding of its biogeographic implications for birds. Here, we combined phylogenetic data with distributional data using a supermatrix approach in order to depict the historical connection dynamics between these biomes for New World suboscines. We examined the variation in divergence time and then compared the spatial distributions of taxon pairs representing old and recent divergences. Our results pointed to two distinct spatiotemporal pathways connecting the Atlantic and the Amazonian forests in the past: (1) old connections (middle to late Miocene) through the current southern Cerrado and Mato Grosso and the transition towards the Chaco and palm savannas of Bolivia and Paraguay; (2) young connections (Pliocene to Pleistocene) that possibly occurred through the Cerrado and Caatinga in northeastern Brazil. We suggest that the main events that played important roles in these connections were geotectonic events during the late Tertiary associated with the uplift of the Andes (old connections) and Quaternary climate changes that promoted the expansion of gallery forest through the Cerrado and Caatinga in northeastern Brazil (young connections). Our results provide the first general temporal and spatial model of how the Atlantic and Amazonian forests were connected in the past, which was derived using bird data.


Neotropical region New World suboscines Supermatrix Worldmap Biogeography Miocene Quaternary 


Verbindungen zwischen atlantischen und amazonischen Waldvogelfaunen spiegeln distinkte historische Ereignisse wider

Zahlreiche Hinweise belegen ehemalige Kontakte zwischen atlantischen und amazonischen Wäldern über die diagonal durch Südamerika verlaufende Trockenvegetationszone hinweg, allerdings bedarf die raumzeitliche Dynamik dieser Kontakte noch näherer Untersuchung, um deren biogeografische Auswirkungen auf Vögel besser verstehen zu können. Hier fassten wir phylogenetische Daten mit Verbreitungsdaten in einer Supermatrix-Analyse zusammen, um so die Dynamik der historischen Verbindungen zwischen diesen Biomen für Neuwelt-Suboscine abzubilden. Wir untersuchten die Variation im Zeitpunkt der Artentrennung und verglichen dann die räumliche Verteilung von Taxonpaaren, die alte und rezente Trennungsereignisse repräsentieren. Unsere Ergebnisse deuten auf zwei distinkte raumzeitliche Verbindungswege zwischen atlantischen und amazonischen Wäldern in der Vergangenheit hin: (1) alte Verbindungen (Mittleres bis Oberes Miozän) durch den heutigen südlichen Cerrado und Mato Grosso sowie den Übergang zum Chaco und den Palmsavannen Boliviens und Perus; (2) junge Verbindungen (Pliozän bis Pleistozän), möglicherweise durch die Cerrados und die Caatinga im nordöstlichen Brasilien. Unserer Ansicht nach spielten die folgenden Hauptereignisse eine wichtige Rolle für diese Verbindungswege: geotektonische Ereignisse während des späten Tertiärs im Zusammenhang mit der Auffaltung der Anden (alte Verbindungen) sowie Klimaänderungen im Quartär, die die Ausbreitung von Galeriewäldern durch Cerrado und Caatinga im nordöstlichen Brasilien begünstigten (junge Verbindungen). Auf der Grundlage von Vogeldaten stellen unsere Ergebnisse die erste allgemeine Näherung für Zeiträume und die Art und Weise dar, wie atlantische und amazonische Wälder in der Vergangenheit in Verbindung standen.



This study was funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil), and the Danish National Research Foundation (support for the Center for Macroecology, Evolution and Climate, Denmark). We thank Marcos M. Coelho and two anonymous reviewers for suggestions regarding a previous version of this manuscript. BEAST and MrBayes analyses were carried out by using the resources of the Computational Biology Service Unit from Cornell University, which is partially funded by Microsoft Corporation. This study is a result of the Research Center on Biodiversity and Computer Science of the Universidade de São Paulo (NAP BioComp).

Supplementary material

10336_2012_866_MOESM1_ESM.doc (668 kb)
Supplementary material 1 (DOC 667 kb)


  1. Ab’Saber AN (1977) Os domínios morfoclimáticos da América do Sul. Primeira Aproximação. Geomorfologia 53:1–23Google Scholar
  2. Albano C, Girão W (2008) Aves das matas úmidas das serras de Aratanha, Baturité e Maranguape, Ceará. Rev Bras Ornit 16:142–154Google Scholar
  3. Andrade-Lima D (1982) Present day forest refuges in Northeastern Brazil. In: Prance GT (ed) Biological diversification in the tropics. Columbia University Press, New York, pp 245–254Google Scholar
  4. Auler AS, Smart PL (2001) Late Quaternary paleoclimate in semiarid northeastern Brazil from U-series dating of travertine and water-table speleothems. Quat Res 55:159–167CrossRefGoogle Scholar
  5. Auler AS, Wang A, Edwards RL, Cheng H, Cristalli PS, Smart ML, Richards DA (2004) Quaternary ecological and geomorphic changes associated with rainfall events in presently semi-arid northeastern Brazil. J Quat Sci 19:693–701CrossRefGoogle Scholar
  6. Barker KF, Barrowclough GF, Groth JG (2002) A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data. Proc R Soc Lond B 269:295–305CrossRefGoogle Scholar
  7. Barker FK, Cibois A, Schikler P, Feinstein J, Cracraft J (2004) Phylogeny and diversification of the largest avian radiation. Proc Natl Acad Sci USA 101:11040–11045PubMedCrossRefGoogle Scholar
  8. Behling H, Arz HW, Patzold J, Wefer G (2000) Late Quaternary vegetational and climate dynamics in northeastern Brazil, inferences from marine core GeoB3104–1. Quat Sci Rev 19:981–994CrossRefGoogle Scholar
  9. Bennett KD (1990) Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology 16:11–21Google Scholar
  10. Brooks T, Balmford A, Burgess N, Fjeldså J, Hansen LA, Moore J, Rahbek C, Williams P (2001) Toward a blueprint for conservation in Africa. Bioscience 51:613–624CrossRefGoogle Scholar
  11. Cabanne GS, d’Horta FM, Sari EHR, Santos FR, Miyaki CY (2008) Nuclear and mitochondrial phylogeography of the Atlantic forest endemic Xiphorhynchus fuscus (Aves: Dendrocolaptidae): biogeography and systematic implications. Mol Phylogenet Evol 49:760–773PubMedCrossRefGoogle Scholar
  12. Cavalcanti D, Tabarelli M (2004) Distribuição das plantas amazônico-nordestinas no centro de endemismo Pernambuco: brejos de altitude versus florestas de terras baixas. In: Porto KC, Cabral JJP, Tabarelli M (eds) Brejos de altitude em Pernambuco e Paraíba. Ministério do Meio Ambiente, Brasília, pp 285–296Google Scholar
  13. Costa LP (2003) The historical bridge between the Amazon and the Atlantic forest of Brazil: a study of molecular phylogeography with small mammals. J Biogeogr 30:71–86CrossRefGoogle Scholar
  14. Couvreur TLP, Chatrou LW, Sosef MSM, Richardson JE (2008) Molecular phylogenetics reveal multiple tertiary vicariance origins of the African rain forest trees. BMC Biol 6:54PubMedCrossRefGoogle Scholar
  15. Cozzuol M (1996) The record of aquatic mammals in southern South America. Muench Geowiss Abh 30:321–342Google Scholar
  16. Cracraft J (1985) Historical biogeography and patterns of differentiation within the South American avifauna: areas of endemism. Ornithol Monogr 36:49–84CrossRefGoogle Scholar
  17. Cracraft J (1988) Deep history biogeography: retrieving the historical pattern of evolving continental biotas. Syst Zool 37:221–236CrossRefGoogle Scholar
  18. Crisci JV, Katinas L, Posadas P (2003) Historical biogeography: an introduction. Harvard University Press, CambridgeGoogle Scholar
  19. Cunningham CW, Collins TM (1994) Developing model systems from molecular biogeography: vicariance and interchange in marine invertebrates. In: Schierwater B, Streit B, Wagner GP, DeSalle R (eds) Molecular ecology and evolution: approaches and applications. Birkhauser, Switzerland, pp 405–433Google Scholar
  20. del Hoyo J, Elliott A, Christie D (2003) Handbook of the birds of the world—broadbills to tapaculos, vol 8. Lynx Edicions, BarcelonaGoogle Scholar
  21. del Hoyo J, Elliott A, Christie D (2004) Handbook of the birds of the world—cotingas to pipits and wagtails, vol 9. Lynx Edicions, BarcelonaGoogle Scholar
  22. Derryberry EP, Claramunt S, Derryberry R, Chesser RT, Cracraft J, Aleixo A, Pérez-Emán J, Remsen JV, Brumfield RT (2011) Lineage diversification and morphological evolution in a large-scale continental radiation: the Neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution 65:2973–2986PubMedCrossRefGoogle Scholar
  23. Donoghue MJ, Moore BR (2003) Toward an integrative historical biogeography. Integr Comp Biol 43:261–270PubMedCrossRefGoogle Scholar
  24. Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214PubMedCrossRefGoogle Scholar
  25. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88PubMedCrossRefGoogle Scholar
  26. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCrossRefGoogle Scholar
  27. Ericson PGP, Christidis L, Cooper A, Irestedt M, Jackson J, Johansson US, Norman JA (2002) A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens. Proc R Soc Lond B 269:235–241CrossRefGoogle Scholar
  28. Fjeldså J (1994) Geographical patterns for relict and young species of birds in Africa and South America and implications for conservation priorities. Biodiv Conserv 3:207–226CrossRefGoogle Scholar
  29. Fjeldså J, Irestedt M (2009) Diversification of the South American avifauna: patterns and implications for conservation in the Andes. Ann Mo Bot Gard 96:398–409CrossRefGoogle Scholar
  30. Fjeldså J, Rahbek C (2006) Diversification of tanagers, a species rich bird group, from lowlands to montane regions of South America. Integr Comp Biol 46:72–81PubMedCrossRefGoogle Scholar
  31. Fjeldså J, Johansson U, Lokugalappatti LGS, Bowie RCK (2007) Diversification of African greenbuls in space and time: linking ecological and historical processes. J Ornithol 148(Suppl. 2):359–367CrossRefGoogle Scholar
  32. Galewski T, Mauffrey JF, Leite YL, Patton JL, Douzery EJ (2005) Ecomorphological diversification among South American spiny rats (Rodentia; Echimyidae): a phylogenetic and chronological approach. Mol Phylogenet Evol 34:601–615PubMedCrossRefGoogle Scholar
  33. Gelman A, Rubin D (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–511CrossRefGoogle Scholar
  34. Girão W, Albano C, Pinto T, Silveira LF (2007) Avifauna da Serra de Baturité: dos naturalistas à atualidade. In: Oliveira TS, Araújo FS (eds) Biodiversidade e conservação da biota na serra de Baturité, Ceará. Edições UFC, FortalezaGoogle Scholar
  35. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224PubMedCrossRefGoogle Scholar
  36. Hanagarth W (1993) Acerca de la geoecologia de las sabanas del Beni en el noreste de Bolivia. Instituto de Ecología, La PazGoogle Scholar
  37. Haq BU, Hardenbol J, Vail P (1987) Chronology of fluctuating sea levels since the triassic. Science 235:1156–1167PubMedCrossRefGoogle Scholar
  38. Hooghiemstra H, Melice JL, Berger A, Shackleton NJ (1993) Frequency-spectra and paleoclimatic variability of the high-resolution 30–1450-Ka Funza I pollen record (Eastern Cordillera, Colombia). Quat Sci Rev 12:141–156CrossRefGoogle Scholar
  39. Hoorn C, Wesselingh F (2010) Amazonia: landscape and species evolution: a look into the past. Blackwell, LondonGoogle Scholar
  40. Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JC, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A (2010) Amazonia through time: andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931PubMedCrossRefGoogle Scholar
  41. Huelsenbech JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic tree. Bioinformatics 17:754–755Google Scholar
  42. Hulka C, Gräfe K-U, Sames B, Uba CE, Heubeck C (2006) Depositional setting of the middle to late Miocene Yecua formation of the Chaco foreland basin, southern Bolivia. J S Am Earth Sci 21:135–150Google Scholar
  43. Irestedt M, Fjeldså J, Johansson US, Ericson PGP (2002) Systematic relationships and biogeography of the tracheophone suboscines (Aves: Passeriformes). Mol Phylogenet Evol 23:499–512PubMedCrossRefGoogle Scholar
  44. Irestedt M, Fjeldså J, Nylander JAA, Ericson PGP (2004) Phylogenetic relationships of typical antbirds (Thamnophilidae) and test of incongruence based on Bayes factors. BMC Evol Biol 4:23PubMedCrossRefGoogle Scholar
  45. Irestedt M, Fjeldså J, Dalén L, Ericson PGP (2009) Convergent evolution, habitat shifts and variable diversification rates in the ovenbird-woodcreeper family (Furnariidae). BMC Evol Biol 9:268PubMedCrossRefGoogle Scholar
  46. Lundberg JG, Marshall LG, Guerrero J, Horton B, Malabarba MCSL, Wesselingh F (1998) The stage for Neotropical fish diversification: a history of tropical South American rivers. In: Malabarba LR, Reis RE, Vari RP, Lucena ZMS, Lucena CAS (eds) Phylogeny and classification of Neotropical fishes. EDIPUCRS, Porto Alegre, pp 13–48Google Scholar
  47. Marks BD, Hackett SJ, Capparella AP (2002) Historical relationships among Neotropical lowland forest areas of endemism as determined by mitochondrial DNA sequence variation within the wedge-billed woodcreeper (Aves: Dendrocolaptidae: Glyphorynchus spirurus). Mol Phylogenet Evol 24:153–167PubMedCrossRefGoogle Scholar
  48. Marshall LG, Lundberg JG (1996) Miocene deposits in the Amazonian Foreland Basin (technical comments). Science 273:123–124Google Scholar
  49. Marshall LG, Sempere T, Gayet M (1993) The Petaca (Late Oligocene–Middle Miocene) and Yecua (Late Miocene) formations of the Subandean-Chaco basin, Bolivia, and their tectonic significance. Docum Lab Géol Lyon 125:291–301Google Scholar
  50. Martini AMZ, Fiaschi P, Amorim AM, Paixão JM (2007) A hot-point within a hot-spot: a high diversity site in Brazil’s Atlantic Forest. Biodivers Conserv 16:3111–3128CrossRefGoogle Scholar
  51. Martins FM, Templeton AR, Pavan ACO, Kohlbach BC, Morgante JS (2009) Phylogeography of the common vampire bat (Desmodus rotundus): marked population structure, Neotropical Pleistocene vicariance and incongruence between nuclear and mtDNA markers. BMC Evol Biol 9:294PubMedCrossRefGoogle Scholar
  52. Miller MJ, Bermingham E, Klicka J, Escalante P, Amaral FSR, Weir JT, Winker K (2008) Out of Amazonia again and again: episodic crossing of the Andes promotes diversification in a lowland forest flycatcher. Proc R Soc Lond B 275:1133–1142CrossRefGoogle Scholar
  53. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proc Gateway Computing Environments Workshop (GCE), New Orleans, 14 Nov 2010, pp 1–8Google Scholar
  54. Moyle RG, Chesser RT, Brumfield RT, Tello JG, Marchese DJ, Cracraft J (2009) Phylogeny and phylogenetic classification of the antbirds, ovenbirds, woodcreepers, and allies (Aves: Passeriformes: infraorder Furnariides). Cladistics 25:386–405CrossRefGoogle Scholar
  55. Nyári ÁS (2007) Phylogeographic patterns, molecular and vocal differentiation, and species limits in Schiffornis turdina (Aves). Mol Phylogenet Evol 44:154–164PubMedCrossRefGoogle Scholar
  56. Ohlson J, Fjeldså J, Ericson PGP (2008) Tyrant flycatchers coming out in the open: ecological radiation in Tyrannidae (Aves, Passeriformes). Zool Scripta 37:315–335CrossRefGoogle Scholar
  57. Oliveira PE, Barreto AMF, Suguio K (1999) Late pleistocene/holocene climatic and vegetational history of the Brazilian caatinga: the fossil dunes of the middle São Francisco River. Palaeogeogr Palaeoclimatol Palaeoecol 152:319–337CrossRefGoogle Scholar
  58. Patton JL, Costa LP (1999) Diversidade, limites geográficos e sistemáticos de marsupiais brasilieros. In: Cáceres NC, Monteiro-Filho ELA (eds) Marsupiais brasileiros. Editora da Universidade Federal do Paraná, Curitiba, pp 63–81Google Scholar
  59. Patton JL, da Silva MN, Lara MC, Mustrangi MA (1997) Diversity, differentiation, and the historical biogeography of nonvolant small mammals of the neotropical forests. Tropical forest remnants. University of Chicago Press, ChicagoGoogle Scholar
  60. Paxton CGM, Crampton WGR (1996) Miocene deposits in the Amazonian foreland basin. Science 273:123CrossRefGoogle Scholar
  61. Pellegrino KMC, Rodrigues MT, Harris DJ, Yonenaga-Yassuda Y, Sites JS Jr (2011) Molecular phylogeny, biogeography and insights into the origin of parthenogenesis in the Neotropical genus Leposoma (Squamata: Gymnophthalmidae): ancient links between the Atlantic Forest and Amazonia. Mol Phylogenet Evol 61:446–459PubMedCrossRefGoogle Scholar
  62. Percequillo AR, Weksler M, Costa LP (2011) A new genus and species of rodent from the Brazilian Atlantic Forest (Rodentia: Cricetidae: Sigmodontinae: Oryzomyini), with comments on oryzomyine biogeography. Zool J Linn Soc 161:357–390CrossRefGoogle Scholar
  63. Por FD (1992) Sooretama: the Atlantic rain forest of Brazil. SPB Academic, The HagueGoogle Scholar
  64. Rahbek C, Graves GR (2001) Multiscale assessment of patterns of avian species richness. Proc Natl Acad Sci USA 98:4534–4539Google Scholar
  65. Räsänen ME, Linna AM, Santos JCR, Negri FR (1995) Late Miocene tidal deposits in the Amazonian foreland basin. Science 269:386–390PubMedCrossRefGoogle Scholar
  66. Roddaz M, Brusset S, Boby P, Hérail G (2006) Miocene tidal-influenced sedimentation in the forebulge-backbulge depozones of the Beni-Mamore foreland basin (northern Bolivia). J South Am Earth Sci 20:351–368CrossRefGoogle Scholar
  67. Roncal J, Blach-Overgaard A, Borchsenius F, Balslev H, Svenning J-C (2011) A dated phylogeny complements macroecological analysis to explain the diversity patterns in Geonoma (Arecaceae). Biotropica 43:324–334CrossRefGoogle Scholar
  68. Rull V (2008) Speciation timing and neotropical biodiversity: the Tertiary–Quaternary debate in the light of molecular phylogenetic evidence. Mol Ecol 17:2722–2729Google Scholar
  69. Silva JMC (1994) Can avian distribution patterns in northern Argentina be related to gallery-forest expansion-retraction caused by the quaternary climatic changes? Auk 111:495–499CrossRefGoogle Scholar
  70. Silva JMC (1996) Distribution of Amazonian and Atlantic birds in gallery forests of the Cerrado region, South America. Ornit Neotrop 7:1–18Google Scholar
  71. Smith BT, Klicka J (2010) The profound influence of the late Pliocene Panamanian uplift on the exchange, diversification, and distribution of New World birds. Ecography 33:333–342Google Scholar
  72. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 75:758–771CrossRefGoogle Scholar
  73. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using likelihood, distance, and parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  74. Tello JG, Moyle RG, Marchese DJ, Cracraft J (2009) Phylogeny and phylogenetic classification of the tyrant flycatchers, cotingas, manakins, and their allies (Aves: Tyrannides). Cladistics 25:429–467CrossRefGoogle Scholar
  75. Tolley KA, Tilbury CR, Measey GJ, Menegon M, Branch WR, Matthee CA (2011) Ancient forest fragmentation or recent radiation? Testing refugial speciation models in chameleons within an African biodiversity hotspot. J Biogeogr 38:1748–1760CrossRefGoogle Scholar
  76. Tuomisto H (2007) Interpreting the biogeography of South America. J Biogeogr 34:1294–1295CrossRefGoogle Scholar
  77. Vilela RV, Machado T, Ventura K, Fagundes V, Silva MJDJ, Yonenaga-Yassuda Y (2009) The taxonomic status of the endangered thin-spined porcupine, Chaetomys subspinosus (Olfers, 1818), based on molecular and karyologic data. BMC Evol Biol 9:29PubMedCrossRefGoogle Scholar
  78. Vivo M (1997) Mammalian evidence of historical ecological change in the Caatinga semiarid vegetation of northeastern Brazil. J Comp Biol 2:65–73Google Scholar
  79. Wang XF, Auler AS, Edwards RL, Cheng H, Cristalli PS, Smart PL, Richards DA, Shen CC (2004) Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432:740–743PubMedCrossRefGoogle Scholar
  80. Weir JT, Price M (2011) Andean uplift promotes lowland speciation through vicariance and dispersal in Dendrocincla woodcreepers. Mol Ecol 20:4550–4563PubMedCrossRefGoogle Scholar
  81. Weir JT, Bermingham E, Schluter D (2009) The Great American biotic interchange in birds. Proc Natl Acad Sci USA 106:21737–21742Google Scholar
  82. Wesselingh FP, Salo JA (2006) Miocene perspective on the evolution of the Amazonian biota. Scripta Geol 133:439–458Google Scholar
  83. Wesselingh FP, Kaandorp RJG, Vonhof HB, Räsänen ME, Renema W, Gingras M (2006) The nature of aquatic landscapes in the Miocene of western Amazonia: an integrated palaeontological and geochemical approach. Scripta Geol 133:363–393Google Scholar
  84. Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends Ecol Evol 19:639–644PubMedCrossRefGoogle Scholar
  85. Williams PH (1998) Key sites for conservation: area-selection methods for biodiversity. In: Mace GM, Balmford A, Ginsberg JR (eds) Conservation in a changing world. Cambridge University Press, Cambridge, pp 211–249Google Scholar
  86. Williams PH, Gaston KJ (1998) Biodiversity indicators: graphical techniques, smoothing and searching for what makes relationships work. Ecography 21:551–560CrossRefGoogle Scholar
  87. Willis EO (1992) Zoogeographical origins of eastern Brazilian birds. Ornit Netrop 3:1–15Google Scholar
  88. Nylander JAA (2004) MrModeltest 2.2 (program distributed by the author). Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2012

Authors and Affiliations

  • Henrique Batalha-Filho
    • 1
    Email author
  • Jon Fjeldså
    • 2
  • Pierre-Henri Fabre
    • 2
  • Cristina Yumi Miyaki
    • 1
  1. 1.Laboratório de Genética e Evolução Molecular de Aves, Departamento de Genética e Biologia Evolutiva, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  2. 2.Center for Macroecology, Evolution and Climate at the Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations