Advertisement

Journal of Ornithology

, Volume 153, Issue 4, pp 1215–1223 | Cite as

Breeders and floaters use different habitat cover: should habitat use be a social status-dependent strategy?

  • Letizia CampioniEmail author
  • Rui Lourenço
  • María del Mar Delgado
  • Vincenzo Penteriani
Original Article

Abstract

In order to understand habitat requirements in territorial species, it is important to take into account the specific tasks and constraints associated with the different stages and social status of an individual life cycle (e.g. territorial breeder or nonterritorial floater). However, social status has rarely been taken into account in studies on habitat preference, selection and use. In the present study, we compare habitat characteristics near nesting sites of Eagle Owl Bubo bubo breeders with those of diurnal roosting places chosen by floating owls. As both nesting and roosting sites are important components of an individual’s fitness (e.g. mating success vs. survival), we expected that the use of those locations would reflect the different cost–benefit trade-offs related to the status of breeder and floater, respectively. By analysing the structure of the forest stands and the landscape features surrounding both places at two spatial scales, we found that: (1) breeders and the floaters used forest stands with a different vertical structure; compared with the floaters, the breeders used more mature stands characterised by higher trees; (2) as expected, breeders and floaters did not show any specific habitat use at the landscape scale. Our results showed a clear discrepancy in habitat use according to social classes, suggesting social tasks/constraints (successful reproduction vs. overcoming dispersal costs) as potential determinants of two divergent strategies in habitat use.

Keywords

Habitat use Social status Floaters Eagle Owl Bubo bubo Trade-off 

Zusammenfassung

Brüter und Nichtbrüter nutzen unterschiedliche Habitatbedeckung: sollte Habitatnutzung eine Strategie sein, die vom sozialen Status abhängt?

Um Habitatansprüche territorialer Arten zu verstehen, ist es wichtig, die spezifischen Aufgaben und Einschränkungen zu berücksichtigen, die mit unterschiedlichen Abschnitten und sozialen Status im Lebenszyklus eines Individuums (z. B. territorialer Brüter oder nicht territorialer Nichtbrüter) zusammenhängen. Der soziale Status ist in Studien über Habitatpräferenzen, -selektion und -nutzung jedoch nur selten in Betracht gezogen worden. In der vorliegenden Studie vergleichen wir Habitateigenschaften in der Nähe von Niststandorten brütender Uhus (Bubo bubo) mit denen von Ruheplätzen, die nicht brütende Eulen tagsüber nutzen. Da sowohl Brut- als auch Ruheplätze wichtige Komponenten der individuellen Fitness (z. B. Paarungserfolg versus Überleben) sind, erwarteten wir, dass die Nutzung dieser Plätze die unterschiedlichen Kosten-Nutzen-Abwägungen, die den Status als Brüter bzw. Nichtbrüter betreffen, wiederspiegeln würde. Indem wir die Struktur der Waldbestände und die beide Plätze umgebenden Landschaftsmerkmale auf zwei räumlichen Ebenen analysiert haben, fanden wir heraus, dass (1) Brüter und Nichtbrüter Waldbestände mit unterschiedlicher vertikaler Struktur nutzten—verglichen mit Nichtbrütern nutzten die Brüter ältere Bestände, die sich durch höhere Bäume auszeichneten, und dass (2) wie erwartet Brüter und Nichtbrüter keinerlei spezifische Habitatnutzung bezüglich des Landschaftstyps zeigten. Unsere Ergebnisse zeigten einen klaren Unterschied in der Habitatnutzung entsprechend dem sozialen Status, was darauf hindeutet, dass soziale Aufgaben/Einschränkungen (erfolgreiche Fortpflanzung versus Überwinden der Kosten der Ausbreitung) potenzielle Determinanten zweier unterschiedlicher Habitatnutzungsstrategien darstellen.

Notes

Acknowledgments

The first draft of the manuscript has been greatly improved thanks to the comment of Pete Bloom and an anonymous referee. We are grateful to O. Mora, C. Bettega and F. Goitre for their help during the field work. Funding for this study was provided by the research project from Consejería de Medio Ambiente, of the Junta de Andalucía (research project no. 700/2005/M/00./). During this work L.C. was supported by a doctoral grant (JAE pre-doc from the C.S.I.C.). Owls were trapped and marked under the Junta de Andalucía–Consejería de Medio Ambiente permit nos. SCFFSAFR/GGG RS-260/02 and SCFFS-AFR/CMM RS-1904/02.

References

  1. Anderson DP, Forester JD, Turner MG, Frair JL, Merrill EH, Fortin D, Mao JS, Boyce MS (2005) Factors influencing female home range sizes in elk (Cervus elaphus) in North American landscapes. Landsc Ecol 20:257–271. doi: 10.1007/s10980-005-0062-8 CrossRefGoogle Scholar
  2. Arcese P (1989) Intrasexual competition, mating systems and natal dispersal in song sparrows. Anim Behav 38:958–979. doi: 10.1016/S0003-3472(89)80137-X CrossRefGoogle Scholar
  3. Beyer HL, Haydon DT, Morales JM, Frair JL, Hebblewhite M, Mitchell M, Matthiopoulos J (2010) The interpretation of habitat preference metrics under use—availability designs. Phil Trans R Soc Lond B 365:2245–2254. doi: 10.1098/rstb.2010.0083 CrossRefGoogle Scholar
  4. Bonham CD (1989) Measurements for terrestrial vegetation. Wiley, New YorkGoogle Scholar
  5. Brown DR, Long JA (2007) What is a winter floater? Causes, consequences, and implication for habitat selection. Condor 109:548–565. doi: 10.1650/8351.1 CrossRefGoogle Scholar
  6. Campioni L, Delgado MM, Penteriani V (2010) Social status influences microhabitat selection: breeder and floater eagle owls Bubo bubo use different post sites. Ibis 152:569–579. doi: 10.1111/j.1474-919X.2010.01030.x CrossRefGoogle Scholar
  7. Casado E, Suárez-Seoane S, Lamelin J, Ferrer M (2008) The regulation of brood reduction in booted eagles Hieraaetus pennatus through habitat heterogeneity. Ibis 150:788–798. doi: 10.1111/j.1474-919X.2008.00862.x CrossRefGoogle Scholar
  8. Castroviejo J (1993) Mapa del Parque Nacional de Doñana. Consejo Superior de Investigaciones Científicas y Agencia de Medio Ambiente de la Junta de Andalucía, MadridGoogle Scholar
  9. Cliff AD, Ord JK (1981) Spatial processes. Models and applications. Pion, LondonGoogle Scholar
  10. Clobert J, Danchin E, Dhondt AA, Nichols JD (2001) Dispersal. Oxford University Press, OxfordGoogle Scholar
  11. Clobert J, Le Galliard JF, Cote J, Meylan S, Massot M (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett 12:197–209. doi: 10.1111/j.1461-0248.2008.01267.x PubMedCrossRefGoogle Scholar
  12. Dale S, Christiansen P (2010) Individual flexibility in habitat selection in the ortolan bunting Emberiza hortulana. J Avian Biol 4:266–272. doi: 10.1111/j.1600-048X.2009.04824.x CrossRefGoogle Scholar
  13. Delgado MM, Penteriani V (2007) Vocal behaviour and neighbour spatial arrangement during vocal displays in eagle owls. J Zool 271:3–10. doi: 10.1111/j.1469-7998.2006.00205.x CrossRefGoogle Scholar
  14. Delgado MM, Penteriani V (2008) Behavioral states help translate dispersal movements into spatial distribution patterns of floaters. Am Nat 172:475–485. doi: 10.1086/590964 CrossRefGoogle Scholar
  15. Delgado MM, Penteriani V, Nams VO, Campioni L (2009a) Changes of movement patterns from early dispersal to settlement. Behav Ecol Socbiol 64:35–43. doi: 10.1007/s00265-009-0815-5 CrossRefGoogle Scholar
  16. Delgado MM, Penteriani V, Nams VO (2009b) How fledglings explore surroundings from fledging to dispersal? A case study with eagle owls. Ardea 97:7–15. doi: 10.5253/078.097.0102 CrossRefGoogle Scholar
  17. Delgado MM, Penteriani V, Revilla E, Nams VO (2010) The effect of phenotypic traits and external cues on natal dispersal movements. J Anim Ecol 79:620–632. doi: 10.1111/j.1365-2656.2009.01655.x CrossRefGoogle Scholar
  18. Elkie P, Rempel R, Carr A (1999) Patch analyst user’s manual: a tool for quantifying landscape structure. Ont Min Natur Resour Northwest Sci Technol. Thunder Bay, Ontario http://flash.lakeheadu.ca/_rrempe/patch/
  19. Fernández N (2005) Spatial patterns in European rabbit abundance after a population collapse. Landsc Ecol 20:897–910. doi: 10.1007/s10980-004-3976-7 CrossRefGoogle Scholar
  20. Fernández N, Delibes M, Palomares F, Mladenoff DJ (2003) Identifying breeding habitat for the Iberian lynx: inferences from a fine-scale spatial analysis. Ecol Appl 13:1310–1324. doi: 10.1890/02-5081 CrossRefGoogle Scholar
  21. Fero K, Moore PA (2008) Social spacing of crayfish in natural habitats: what role does dominance play? Behav Ecol Sociobiol 62:1119–1125. doi: 10.1007/s00265-007-0540-x CrossRefGoogle Scholar
  22. Ferrer M, Bissom I (2003) Age and territory-quality effects on fecundity in the Spanish imperial eagle (Aquila adalberti). Auk 120:180–186. doi: 10.1642/0004-8038(2003)120[0180:AATEOF]2.0.CO;2 CrossRefGoogle Scholar
  23. Ferrer M, Harte M (1997) Habitat selection by immature Spanish imperial eagles during the dispersal period. J Appl Ecol 34:1359–1364CrossRefGoogle Scholar
  24. Griffiths R, Double MC, Orr K, Dawson RJG (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075. doi: 10.1046/j.1365-294x.1998.00389.x PubMedCrossRefGoogle Scholar
  25. King DI, Degraaf RM, Smith ML, Buonaccorsi JP (2006) Habitat selection and habitat-specific survival of fledgling ovenbirds (Seiurus aurocapilla). J Zool 269:414–421. doi: 10.1111/j.1469-7998.2006.00158.x CrossRefGoogle Scholar
  26. Kozakiewicz M (1995) Resource tracking in space and time. In: Hansson L, Fahrig L, Merriam G (eds) Mosaic landscapes and ecological processes. Chapman and Hall, London, pp 136–148CrossRefGoogle Scholar
  27. Law BS, Dickman CR (1998) The use of habitat mosaics by terrestrial vertebrate fauna: implications for conservation and management. Biol Conserv 7:323–333. doi: 10.1023/A:1008877611726 CrossRefGoogle Scholar
  28. Lourenço R, Penteriani V, Delgado MM, Marchi-Bartolozzi M, Rabaça JE (2011) Kill before being killed: an experimental approach supports the predator-removal hypothesis as a determinant of intraguild predation in top predators. Behav Ecol Socbiol 65:1709–1714. doi: 10.1007/s00265-011-1178-2 CrossRefGoogle Scholar
  29. Millon A, Petty SJ, Lambin X (2010) Pulsed resources affect the timing of first breeding and lifetime reproductive success of tawny owls. J Anim Ecol 79:426–435. doi: 10.1111/j.1365-2656.2009.01637.x PubMedCrossRefGoogle Scholar
  30. Morosinotto C, Thomson RL, Korpimäki E (2010) Habitat selection as an antipredator behaviour in a multi-predator landscape: all enemies are not equal. J Anim Ecol 79:327–333. doi: 10.1111/j.1365-2656.2009.01638.x PubMedCrossRefGoogle Scholar
  31. Palomares F, Delibes M, Revilla E, Calzada J, Fedriani JM (2001) Spatial ecology of Iberian lynx and abundance of European rabbits in southwestern Spain. Wildl Monogr 148:1–36Google Scholar
  32. Penteriani V (2002) Goshawk nesting habitat in Europe and North America: a review. Ornis Fenn 79:149–163Google Scholar
  33. Penteriani V, Delgado MM (2008) Brood-switching in eagle owl Bubo bubo fledglings. Ibis 150:816–819. doi: 10.1111/j.1474-919X.2008.00831.x Google Scholar
  34. Penteriani V, Delgado MM (2009a) The dusk chorus from an owl perspective: eagle owls vocalize when their white throat badge contrasts most. PLoS One 4(4):e4960. doi: 10.1371/journal.pone.0004960 PubMedCrossRefGoogle Scholar
  35. Penteriani V, Delgado MM (2009b) Owls may use faeces and prey feathers to signal current reproduction. PLoS One 3(8):e3014. doi: 10.1371/journal.pone.0003014 CrossRefGoogle Scholar
  36. Penteriani V, Delgado MM (2011) Birthplace-dependent dispersal: are directions of natal dispersal determined a priori? Ecography 34:729–737. doi: 10.1111/j.1600-0587.2010.06773.x CrossRefGoogle Scholar
  37. Penteriani V, Delgado MM (2012) There is a limbo under the moon: what social interactions tell us about the floaters’ underworld. Behav Ecol Sociobiol 66:317–327. doi: 10.1007/s00265-011-1279-y CrossRefGoogle Scholar
  38. Penteriani V, Faivre B (1997) Breeding density and nest site selection in a goshawk Accipiter gentilis population of the Central Apennines (Abruzzo, Italy). Bird Study 44:136–145. doi: 10.1080/00063659709461049 CrossRefGoogle Scholar
  39. Penteriani V, Delgado MM, Maggio C, Aradis A, Sergio F (2004) Development of chicks and pre-dispersal behaviour of young in the eagle owl Bubo bubo. Ibis 147:155–168. doi: 10.1111/j.1474-919x.2004.00381.x CrossRefGoogle Scholar
  40. Penteriani V, Delgado MM, Alonso-Alvarez C, Sergio F (2007) The importance of visual cues for nocturnal species: eagle owls signal by badge brightness. Behav Ecol 18:143–147. doi: 10.1093/beheco/arl060 CrossRefGoogle Scholar
  41. Penteriani V, Delgado MM, Maggio C, Alonso-Alvarez C, Holloway GJ (2008a) Owls and rabbits: selective predation against substandard individuals by a sit-and-wait predator. J Avian Biol 39:215–221. doi: 10.1111/j.0908-8857.2008.04280.x CrossRefGoogle Scholar
  42. Penteriani V, Lourenço R, Delgado MM (2008b) El fenómeno de la colonización de Doñana por parte del búho real: patrones espacio-temporales de la población y efectos sobre las comunidades de aves y mamíferos. Final Report, C.S.I.C.-Junta de Andalucía EXPTE:700/2005/M/00Google Scholar
  43. Penteriani V, Ferrer M, Delgado MM (2011a) Floater strategies and dynamics in birds, and their importance in conservation biology: towards an understanding of nonbreeders in avian populations. Anim Conserv 14:233–241. doi: 10.1111/j.1469-1795.2010.00433.x CrossRefGoogle Scholar
  44. Penteriani V, Kuparinen A, Delgado MM, Lourenço R, Campioni L (2011b) Individual status, foraging effort and need for conspicuousness shape behavioural responses of a predator to moon phases. Anim Behav 82:413–420. doi: 10.1016/j.anbehav.2011.05.027 CrossRefGoogle Scholar
  45. Penteriani V, Lourenço R, Delgado MM (2012) Eagle owls in Doñana: a conservation dilemma or not? Br Birds 105:88–95Google Scholar
  46. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  47. Racović A, Mikuska T (2009) Population size, distribution and habitat selection of the white-tailed eagle Haliaeetus albicilla in the alluvial wetlands of Croatia. Biologia 64:1–9. doi: 10.2478/s11756-008-0011-0 CrossRefGoogle Scholar
  48. Rohner C (1997) Non-territorial ‘floaters’ in great horned owls: space use during a cyclic peak of snowshoe hares. Anim Behav 53:901–912. doi: 10.1006/anbe.1996.0381 CrossRefGoogle Scholar
  49. Sergio F, Blas J, Forero M, Fernández N, Donázar JA, Hiraldo F (2005) Preservation of wide-ranging top predators by site-protection: black and red kites in Doñana National Park. Biol Conserv 125:11–21. doi: 10.1016/j.biocon.2005.03.002 CrossRefGoogle Scholar
  50. Sergio F, Marchesi L, Pedrini P, Penteriani V (2007) Coexistence of a generalist owl with its intraguild predator: distance-sensitive or habitat-mediated avoidance? Anim Behav 74:1607–1616. doi: 10.1016/j.anbehav.2006.10.022 CrossRefGoogle Scholar
  51. Smith SM (1978) “Underworld” in a territorial sparrow: adaptive strategy for floaters. Am Nat 112:571–582CrossRefGoogle Scholar
  52. Stamp J, Krishnav VV, Reid ML (2005) Search costs and habitat selection by dispersers. Ecology 86:510–518. doi: 10.1890/04-0516 CrossRefGoogle Scholar
  53. Stutchbury BJ (1991) Floater behaviour and territory acquisition in male purple martins. Anim Behav 42:435–443. doi: 10.1016/S0003-3472(05)80042-9 CrossRefGoogle Scholar
  54. Sunde P, Bølstad MS, Desfor KB (2003) Diurnal exposure as a risk sensitive behaviour in tawny owls Strix aluco? J Avian Biol 34:409–418. doi: 10.1111/j.0908-8857.2003.03105.x CrossRefGoogle Scholar
  55. Terborgh J (1989) Where have all the birds gone?. Princeton University Press, PrincetonGoogle Scholar
  56. Tobler M, Smith HG (2004) Specific floater home ranges and prospective behaviour in the European starling, Sturnus vulgaris. Naturwissenschaften 91:85–89. doi: 10.1007/s00114-003-0486-4 PubMedCrossRefGoogle Scholar
  57. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2012

Authors and Affiliations

  • Letizia Campioni
    • 1
    Email author
  • Rui Lourenço
    • 1
    • 2
  • María del Mar Delgado
    • 1
    • 3
  • Vincenzo Penteriani
    • 1
    • 4
  1. 1.Department of Conservation Biology, Biological Station of DoñanaC.S.I.C.SevilleSpain
  2. 2.LabOr—Laboratory of Ornithology and Institute of Mediterranean Agricultural and Environmental SciencesUniversity of ÉvoraÉvoraPortugal
  3. 3.Metapopulation Research Group, Department of BiosciencesUniversity of HelsinkiHelsinkiFinland
  4. 4.Finnish Museum of Natural History, Zoological MuseumUniversity of HelsinkiHelsinkiFinland

Personalised recommendations