Journal of Ornithology

, Volume 153, Issue 4, pp 1031–1044 | Cite as

The restricted range of the Ethiopian Bush-crow Zavattariornis stresemanni is a consequence of high reliance on modified habitats within narrow climatic limits

  • Paul F. Donald
  • Kai Gedeon
  • Nigel J. Collar
  • Claire N. Spottiswoode
  • Mengistu Wondafrash
  • Graeme M. Buchanan
Original Article


We attempt to describe and explain the peculiarly restricted distribution of the globally threatened Ethiopian Bush-crow Zavattariornis stresemanni. At a regional scale, models containing only correlates of land cover suggested a far wider distribution of suitable habitat in north-east Africa than the area actually occupied. However, models including only climate variables predicted the known distribution almost perfectly, and suggested that the species’ area of occupancy is delimited by a pocket of climate that is cooler, dryer and more seasonal than surrounding areas. The predicted probability of occurrence was low outside a narrow range of mean annual temperatures of 17.5–20°C. Within the area predicted to be climatically most suitable, records of Bush-crows were concentrated in 1-km cells of marginally but significantly lower normalised difference vegetation index (NDVI), indicating a preference for areas of lower photosynthetic activity. At a finer spatial scale within a 10-km2 intensive study site in the core of the species’ range, nests were located in 30-m cells of higher NDVI but always close to areas of lower NDVI. These areas of lower NDVI comprise open grassland, which standardised observations of individual birds showed to be the main foraging habitat. However, taller vegetation is also necessary for nesting and roosting; the average height of nests from the ground was nearly 5 m. Therefore, the species’ range appears to be defined primarily by a unique climate pocket within which it shows a preference for park-like habitats of grassland interspersed with taller vegetation, largely the result of clearance of vegetation by people and their associated grazers. The diet appeared unspecialised and a wide range of feeding methods was observed. Models estimate the species’ optimal climatic range to cover around 6,000 km2, of which perhaps 4,500 km2 has suitable land cover. We tentatively estimate the global population to be at least 9,000 breeding pairs, with a potentially larger additional population of non-breeding birds, particularly nest-helpers. Several climate models predict increases in both temperature and precipitation in the southern highlands of Ethiopia. The species’ narrow climatic range suggests that global climate change may therefore pose a serious threat to its long-term survival.


African birds Climate change Environmental niche models Biogeography Habitat selection 


Das beschränkte Areal des Akazienhähers Zavattariornis stresemanni ist eine Folge hoher Abhängigkeit von nutzungsveränderten Lebensräumen innerhalb enger klimatischer Grenzen

Wir versuchen, die eigentümlich beschränkte Verbreitung des global gefährdeten Akazienhähers zu beschreiben und zu erklären. Auf regionaler Ebene legen Modelle, die nur die Bodenbedeckung berücksichtigen, eine wesentlich weitere Verbreitung geeigneter Habitate in Nordost-Afrika nahe als das tatsächlich besetzte Gebiet. Modelle hingegen, die nur Klimavariablen berücksichtigen, bilden die tatsächliche Verbreitung nahezu vollkommen ab. Sie lassen darauf schließen, dass das Verbreitungsgebiet durch ein Klimaareal begrenzt wird, das kühler, trockener und saisonaler als das der umliegenden Regionen ist. Außerhalb einer sehr engen Spanne der mittleren Jahrestemperatur von 17.5 bis 20°C ist die prognostizierte Vorkommenswahrscheinlichkeit gering. Innerhalb des als klimatisch am besten geeigneten vorhergesagten Gebietes konzentrierten sich die Beobachtungen von Akazienhähern in 1 km-Quadranten mit geringfügig, aber signifikant niedrigerem „Normalised Difference Vegetation Index“ (NDVI), was auf eine Bevorzugung von Bereichen mit niedriger Photosyntheseaktivität hinweist. Auf kleinerer räumlicher Ebene innerhalb eines 10 km2 großen Untersuchungsgebietes im Kernareal der Art lagen die Nester in 30 m-Quadranten mit höherem NDVI, aber stets unweit von Bereichen mit niedrigem NDVI. Bei diesen Gebieten handelt es sich um offenes Grasland, dass gemäß standardisierter Beobachtungen an individuellen Vögeln das Hauptnahrungshabitat darstellt. Dennoch ist eine höhere Vegetation für Schlafplätze und die Anlage der Nester wichtig, die durchschnittlich fast 5 Meter über dem Boden errichtet wurden. Daher erscheint das Artareal primär durch ein einzigartiges Klimaareal bestimmt zu sein, innerhalb dessen die Vögel parkähnliches, offenes Graslands mit eingestreuter höherer Vegetation bevorzugen, das weitgehend durch Rodung und Beweidung entstanden ist. Die Nahrung der Vögel erscheint unspezifisch, die Methoden des Nahrungserwerbs sind vielfältig. Die Modelle schätzen das klimatisch optimale Artareal auf etwa 6.000 km2, von denen ca. 4.500 km2 eine geeignete Bodenbedeckung aufweisen. Nach unserer vorsichtigen Schätzung beträgt die weltweite Population mindestens 9.000 Brutpaare, mit einer möglicherweise größeren Zahl zusätzlicher nichtbrütender Helfer. Das kleine, klimatisch beschränkte Areal der Art lässt vermuten, dass der globale Klimawandel das langfristige Überleben der Art ernsthaft gefährdet.

Supplementary material

10336_2012_832_MOESM1_ESM.docx (392 kb)
Supplementary material 1 (DOCX 392 kb)


  1. Angassa A (2002) The effect of clearing bushes and shrubs on range condition in Borana, Ethiopia. Trop Grasslands 36:69–76Google Scholar
  2. Angassa A (2005) The ecological impact of bush encroachment on the yield of grasses in Borana rangeland ecosystem. Afr J Ecol 43:14–20CrossRefGoogle Scholar
  3. Angassa A, Beyene F (2003) Current range condition in southern Ethiopia in relation to traditional management strategies: the perceptions of Borana pastoralists. Trop Grasslands 37:53–59Google Scholar
  4. Angassa A, Oba G (2008) Herder perceptions on impacts of range enclosures, crop farming, fire ban and bush encroachment on the rangelands of Borana, Southern Ethiopia. Hum Ecol 36:201–215CrossRefGoogle Scholar
  5. Arnold KE, Owens IPF (1998) Cooperative breeding in birds: a comparative test of the life history hypothesis. Proc R Soc Lond B 265:739–745CrossRefGoogle Scholar
  6. Ash J, Atkins J (2009) Birds of Ethiopia and Eritrea: an atlas of distribution. Black, LondonGoogle Scholar
  7. Bartholomé E, Belward AS (2005) GLC2000: a new approach to global land cover mapping from Earth observation data. Int J Remote Sens 26:1959–1977CrossRefGoogle Scholar
  8. Bassi M, Tache B (2011) The community conserved landscape of the Borana Oromo, Ethiopia: opportunities and problems. Manag Environ Qual 22:174–186CrossRefGoogle Scholar
  9. Benson CW (1946) Notes on the birds of southern Abyssinia. Ibis 88:444–461CrossRefGoogle Scholar
  10. BirdLife International (2011) Species factsheet: Zavattariornis stresemanni. Downloaded from on 09/08/2011
  11. Borghesio L, Giannetti F (2005) Habitat degradation threatens the survival of the Ethiopian bush crow Zavattariornis stresemanni. Oryx 39:44–49CrossRefGoogle Scholar
  12. Coppock DL (1994) The Borana plateau of southern Ethiopia: synthesis of pastoral research, development and change, 1980–1991. International Livestock Centre for Africa, Addis AbabaGoogle Scholar
  13. Dalle G, Maass BL, Isselstein J (2006) Encroachment of woody plants and its impact on pastoral livestock production in the Borana lowlands, southern Oromia, Ethiopia. Afr J Ecol 44:237–246CrossRefGoogle Scholar
  14. Donald PF, Buchanan GM, Collar NJ, Dellelegn Abebe Y, Gabremichael MN, Mwangi MAK, Ndang’ang’a PK, Spottiswoode CN, Wondafrash M (2010) Rapid declines in habitat quality and population size of the Liben Lark Heteromirafra sidamoensis necessitate immediate conservation action. Bird Conserv Int 20:1–12CrossRefGoogle Scholar
  15. Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57CrossRefGoogle Scholar
  16. Ericson PGP, Jansen A-L, Johansson US, Ekman J (2005) Inter-generic relationships of the crows, jays, magpies and allied groups (Aves: Corvidae) based on nucleotide sequence data. J Avian Biol 36:222–234CrossRefGoogle Scholar
  17. Fry CH, Keith S, Urban EK (2000) The birds of Africa, vol VI. Academic, LondonGoogle Scholar
  18. Gedeon K (2006) Observations on the biology of the Ethiopian Bush Crow Zavattariornis stresemanni. Bull Afr Bird Club 13:178–188Google Scholar
  19. George WG, Casler CL (1972) Subalular apterium in birds. Auk 89:245–262Google Scholar
  20. Hayworth AM, Weathers WW (1984) Temperature regulation and climatic adaptation in black-billed and yellow-billed magpies. Condor 86:19–26CrossRefGoogle Scholar
  21. Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785CrossRefGoogle Scholar
  22. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  23. Homann S (2004) Indigenous knowledge of Borana pastoralists in natural resource management: a case study from southern Ethiopia. PhD thesis, Justus Liebig University, GiessenGoogle Scholar
  24. IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  25. Kamp J, Sheldon RD, Koshkin MA, Donald PF, Biedermann R (2009) Post-Soviet steppe management causes pronounced synanthropy in the globally threatened sociable lapwing Vanellus gregarius. Ibis 151:452–463CrossRefGoogle Scholar
  26. Kelly A, Godley BJ, Furness RW (2004) Magpies, Pica pica, at the southern limit of their range actively select their thermal environment at high ambient temperatures. Zool Middle East 32:13–25Google Scholar
  27. Kingdon J (1990) Island Africa. Collins, LondonGoogle Scholar
  28. Laurance WF, Useche DC (2009) Environmental synergisms and extinctions of tropical species. Conserv Biol 23:1427–1437PubMedCrossRefGoogle Scholar
  29. Laurance WF, Goosem M, Laurance SGW (2009) Impacts of roads and linear clearings on tropical forests. Trends Ecol Evol 24:659–669PubMedCrossRefGoogle Scholar
  30. Laurance WF, Useche DC, Shoo LP, Herzog SK, Kessler M, Escobar F, Brehm G, Axmacher JC, Chen IC, Gamez LA, Hietz P, Fiedler K, Pyrcz T, Wolf J, Merkord CL, Cardelus C, Marshall AR, Ah-Peng C, Aplet GH, Arizmendi MD, Baker WJ, Barone J, Bruhl CA, Bussmann RW, Cicuzza D, Eilu G, Favila ME, Hemp A, Hemp C, Homeier J, Hurtado J, Jankowski J, Kattan G, Kluge J, Kromer T, Lees DC, Lehnert M, Longino JT, Lovett J, Martin PH, Patterson BD, Pearson RG, Peh KSH, Richardson B, Richardson M, Samways MJ, Senbeta F, Smith TB, Utteridge TMA, Watkins JE, Wilson R, Williams SE, Thomas CD (2011) Global warming, elevational ranges and the vulnerability of tropical biota. Biol Conserv 144:548–557Google Scholar
  31. Mellanby RJ, Ross B, Watt A, Wondafrash M, Ewnetu M, Broadhurst C, Critchlow R, Dadesa A, Deas T, Enawgaw C, Gebremedhin B, Graham E, Maclean S, McKean M, Collar NJ, Spottiswoode CN (2008) Distribution, abundance and habitat preferences of White-tailed Swallow Hirundo megaensis and Ethiopian Bush-crow Zavattariornis stresemanni, two southern Ethiopian endemics. Bird Conserv Int 18:395–412CrossRefGoogle Scholar
  32. Moltoni E (1938) Zavattariornis stresemanni novum genus et nova species Corvidarum. Orn Monatsb 46:80–83Google Scholar
  33. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species’ geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  34. Prinzinger R (1976) Temperatur- und Stoffwechselregulation der Dohle Corvus monedula L., Rabenkrähe Corvus corone corone L. und Elster Pica pica L.; Corvidae. Anz Ornithol Ges Bayern 15:1–47Google Scholar
  35. Ross B, Wondafrash M, Ewnetu M, Watt S, Broadhurst C, Critchlow R, Dadesa A, Deas T, Enawgaw C, Gebremedhim B, Graham E, Maclean S, Mellanby RJ (2009) Notes on the ecology of Ethiopian Bush-crow Zavattariornis stresemanni. Scopus 29:1–6Google Scholar
  36. Smith AB (1993) Origins and spread of pastoralism in Africa. Nomadic Peoples 32:91–105Google Scholar
  37. Solomon TB, Snyman HA, Smit GN (2007) Cattle-rangeland management practices and perceptions of pastoralists towards rangeland degradation in the Borana zone of southern Ethiopia. J Environ Manag 82:481–494CrossRefGoogle Scholar
  38. Spottiswoode CN, Wondafrash M, Gabremichael MN, Abebe YD, Mwangi MAK, Collar NJ, Dolman PM (2009) Rangeland degradation is poised to cause Africa’s first recorded avian extinction. Anim Conserv 12:249–257CrossRefGoogle Scholar
  39. Stattersfield AJ, Crosby MJ, Long AJ, Wege DC (1998) Endemic Bird Areas of the world: priorities for biodiversity conservation. Burlington, CambridgeGoogle Scholar
  40. USGS (2004) Shuttle radar topography mission. Global land cover facility. University of Maryland, MarylandGoogle Scholar
  41. VanDerWal J, Shoo LP, Graham C, William SE (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol Model 220:589–594CrossRefGoogle Scholar
  42. Ward P, Lasage R (2009) Downscaled climate change data from the HADCM3 and ECHAM5 models on precipitation and temperature for Ethiopia and Kenya. Report W-09/05, Institute for Environmental Studies, AmsterdamGoogle Scholar
  43. Watson EE (2003) Examining the potential of indigenous institutions for development: a perspective from Borana, Ethiopia. Dev Change 34:287–309CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2012

Authors and Affiliations

  • Paul F. Donald
    • 1
  • Kai Gedeon
    • 2
  • Nigel J. Collar
    • 3
  • Claire N. Spottiswoode
    • 4
  • Mengistu Wondafrash
    • 5
  • Graeme M. Buchanan
    • 1
  1. 1.Conservation Science DepartmentRSPBBedfordshireUK
  2. 2.Saxon Ornithologists’ SocietyHohenstein-ErnstthalGermany
  3. 3.BirdLife InternationalCambridgeUK
  4. 4.Department of ZoologyUniversity of CambridgeCambridgeUK
  5. 5.Ethiopian Wildlife and Natural History SocietyAddis AbabaEthiopia

Personalised recommendations