Journal of Ornithology

, Volume 153, Issue 3, pp 663–675 | Cite as

Nest-site preferences of Eleonora’s Falcon (Falco eleonorae) on uninhabited islets of the Aegean Sea using GIS and species distribution models

  • Christina Kassara
  • Anastasios Dimalexis
  • Jakob Fric
  • Georgios Karris
  • Christos Barboutis
  • Spyros Sfenthourakis
Original Article

Abstract

Eleonora’s Falcon breeds colonially on small islands of the Mediterranean Sea and Macaronesia. Despite the wealth of papers highlighting the importance of nesting characteristics on this species’ breeding performance, few have addressed the issue of nest-site selection explicitly. In this paper, we develop presence–absence and presence-pseudoabsence models to predict nest occurrence as a function of the topography of the nesting territory. Nest occurrence data were available for nine uninhabited islets of the Aegean Sea, within which the majority of the global population of Eleanora’s Falcon is encountered. Our findings suggest that the presence of conspecifics together with certain topographic features according to the surface area of the islet being studied can be used to predict nest occurrence on uninhabited islets of the Aegean Sea. We conclude that predictive models characterized by flexibility and/or the use of absence data that also consider nest clustering can result in robust predictions of the nest occurrence of Eleonora’s Falcons in Greek breeding colonies and eventually facilitate future monitoring schemes. Since this is the first time nest-site preferences of Eleonora’s Falcon have been analyzed using species distribution models, we encourage the application of similar methodologies to other areas within the species’ breeding range to further validate our findings.

Keywords

Geographic information system (GIS) Nest habitat Spatial models Autocorrelation Logistic regression Maximum entropy 

Zusammenfassung

Untersuchungen zu Neststandort-Präferenzen von Eleonorenfalken (Falco eleonorae) auf unbewohnten kleinen Inseln der Ägäis unter Zuhilfenahme von GIS und Artverteilungsmodellen

Eleonorenfalken sind Koloniebrüter kleiner Inseln des Mittelmeers und Makaronesiens. Trotz der Vielzahl an Veröffentlichungen, die die Bedeutung der Nist-Charakteristika für den Bruterfolg dieser Art hervorheben, haben nur wenige versucht, explizit die Frage nach der Nistplatzwahl zu beantworten. In der vorliegenden Arbeit haben wir Anwesenheits-Abwesenheits- und Nur-Anwesenheits-Modelle entwickelt um das Nestvorkommen als eine Funktion der Topographie des Brutreviers vorherzusagen. Von neun unbewohnten kleinen Inseln der Ägäis, dem Hauptverbreitungsgebiet der Weltpopulation, lagen uns Daten zu den Nestvorkommen vor. Unsere Resultate legen nahe, dass die Anwesenheit von Artgenossen zusammen mit bestimmten topographischen Oberflächencharakteristika verwendet werden kann, um die Nestvorkommen auf den untersuchten unbewohnten Inselchen der Ägäis vorherzusagen. Daraus schlussfolgern wir, dass flexible und/oder Abwesenheits-Daten beinhaltende Vorhersagemodelle, die außerdem ein mögliches Clustern von Nestern berücksichtigen, robuste Prognosen zu Nestvorkommen des Eleonorenfalkens in griechischen Brutkolonien zulassen. Darüber hinaus könnten sie zukünftige Monitoringpläne erleichtern. Da hiermit zum ersten Mal die Neststandort-Präferenz von Eleonorenfalken mit Hilfe von Artverteilungsmodellen analysiert wurde, rufen wir dazu auf, eine ähnliche Methodologie in anderen Bereichen im Brutverbreitungsgebiet der Art anzuwenden, nicht zuletzt um unsere Resultate weiter zu untermauern.

Notes

Acknowledgments

Data were collected in the framework of and funded by the LIFE-Nature Project “Conservation measures for Falco eleonorae in Greece” (LIFE 03NAT/GR/000091) coordinated by the Hellenic Ornithological Society (HOS-Birdlife-Greece) and the Leventis Foundation. We would like to thank Portolou Danae, Latsoudis Panagiotis, Bourdakis Stratis, Xirouchakis Stavros, Georgiakakis Panagiotis and all field ornithologists, volunteers and boat captains for their assistance in fieldwork. We also thank Thomas Gottschalk and two anonymous referees for their fruitful comments on a previous version of this manuscript. Special thanks are extended to Sinos Giokas (University of Patras) for his advice on several statistical issues, Olga Tzortzakaki for contributing the German translation of the abstract and to Costas Lagouvardos (National Observatory of Athens) for the provision of meteorological data for the study areas.

References

  1. Araújo MB, Williams PH (2000) Selecting areas for species persistence using occurrence data. Biol Conserv 96:331–345CrossRefGoogle Scholar
  2. Augustín NH, Mugglestone MA, Buckland S (1996) An autologistic model for the spatial distribution of wildlife. J Appl Ecol 33:339–347CrossRefGoogle Scholar
  3. Badami A (1995) Relazioni tra fattori ecologici e riproduzione nel Falco della Regina (Falco eleonorae). Suppl Ric Biol Selvaggina 22:115–119Google Scholar
  4. BirdLife International (2010) Species factsheet: Falco eleonorae. Available at: http://www.birdlife.org. Accessed: 15 June 2010
  5. Bonnín J (2004) Recompte I paràmetres reproductors de la població balear del Falcó marí Falco eleonorae a l’any 2004. An Ornitol Balears 19:1–9Google Scholar
  6. Brotons L, Thuiller W, Araújo MB, Hirzel AH (2004) Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27:437–448CrossRefGoogle Scholar
  7. De Frutos A, Olea PP, Vera R (2007) Analyzing and modelling spatial distribution of summering lesser kestrel: the role of spatial autocorrelation. Ecol Model 200:33–44CrossRefGoogle Scholar
  8. De Marco P, Diniz-Filho JAF Jr, Bini LM (2008) Spatial analysis improves species distribution modelling during range expansion. Biol Lett 4:577–580PubMedCrossRefGoogle Scholar
  9. Dimalexis A, Xirouchakis S, Portolou D, Latsoudis P, Karris G, Fric J, Georgiakakis P, Barboutis C, Bourdakis S, Ivovič M et al (2008) The status of Eleonora’s Falcon (Falco eleonorae) in Greece. J Ornithol 149:23–30CrossRefGoogle Scholar
  10. Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD et al (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628CrossRefGoogle Scholar
  11. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697CrossRefGoogle Scholar
  12. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  13. Engler R, Guisan A, Rechsteiner L (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J Appl Ecol 41:263–274CrossRefGoogle Scholar
  14. Esri (2006) ArcGIS desktop for Windows. Version 9.2. Esri, RedlandsGoogle Scholar
  15. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  16. Freeman EA, Moisen GG (2008) A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol Model 217:48–58CrossRefGoogle Scholar
  17. Gottschalk TK, Aue B, Hotes S, Ekschmitt K (2011) Influence of grain size on species-habitat models. Ecol Model 222:3403–3412CrossRefGoogle Scholar
  18. Graf RH, Bollmann K, Sachot S, Suter W, Bugmann H (2006) On the generality of habitat distribution models: a case study of capercaillie in three Swiss regions. Ecography 29:319–328CrossRefGoogle Scholar
  19. Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815CrossRefGoogle Scholar
  20. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  21. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  22. Guisan A, Zimmermann NE, Elith J, Graham CH, Phillips S, Peterson AT (2007) What matters for predicting the occurrences of trees: techniques, data, or species’ characteristics? Ecol Monogr 77:615–630CrossRefGoogle Scholar
  23. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a Receiver Operating Characteristic (ROC) curve. Radiology 143:29–36PubMedGoogle Scholar
  24. Hirzel AH, Helfer V, Metral F (2001) Assessing habitat-suitability models with a virtual species. Ecol Model 145:111–121CrossRefGoogle Scholar
  25. Jiménez-Valverde A, Peterson AT, Soberón J, Overton JM, Aragón P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions. doi: 10.1007/s10530-011-9963-4
  26. Kaliontzopoulou A, Brito JC, Carretero MA, Larbes S, Harris DJ (2008) Modelling the partially unknown distribution of wall lizards (Podarcis) in North Africa: ecological affinities, potential areas of occurrence, and methodological constraints. Can J Zool 86:992–1001CrossRefGoogle Scholar
  27. Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673CrossRefGoogle Scholar
  28. Lichstein JW, Simons TR, Shriner SA, Franzreb KE (2002) Spatial autocorrelation and autoregressive models in ecology. Ecol Monogr 72:445–463CrossRefGoogle Scholar
  29. Martínez-Abraín A, Oro D, Ferris V, Belenguer R (2002) Is growing tourist activity affecting the distribution or number of pairs in a small colony of the Eleonora’s Falcon? Anim Biodivers Conserv 25(2):47–51Google Scholar
  30. Mayol J (1977) Estudios sobre el halcón de Eleonor, Falco eleonorae, en las islas Baleares. Ardeola 23:103–136Google Scholar
  31. McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, LondonGoogle Scholar
  32. Panagos P, Van Liedekerke M (2004) The European soil database (distribution version 2). Available at: http://eusoils.jrc.ec.europa.eu/. Accessed 2 June 2009
  33. Pearce J, Ferrier S (2000) An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecol Model 128:127–147CrossRefGoogle Scholar
  34. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175CrossRefGoogle Scholar
  35. Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proc 21st Int Conf Machine Learning, ACM Press, New York, pp 655–662Google Scholar
  36. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  37. Poirazidis K, Goutner V, Skartsi T, Stamou G (2004) Modelling nesting habitat as a conservation tool for the Eurasian Black Vulture (Aegypius monachus) in Dadia National Reserve, northeastern Greece. Biol Conserv 118:148–235CrossRefGoogle Scholar
  38. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available http://www.R-project.org
  39. Rangel TFLVB, Diniz-Filho JAF, Bini LM (2006) Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Glob Ecol Biogeogr 15:321–327CrossRefGoogle Scholar
  40. Ristow D (ed) (1999) International species action plan Eleonora’s Falcon (Falco eleonorae). Birdlife International, Council of Europe, CambridgeGoogle Scholar
  41. Ristow D (2004) On the insect diet of Eleonora’s Falcon Falco eleonorae and its importance for coloniality. In: Chancellor RD, Meyburg B-U (eds) Raptors worldwide. World Working Group on Birds of Prey/MME-Birdlife, London, pp 705–712Google Scholar
  42. Ristow D, Wink M (1985) Breeding success and conservation management of Eleonora’s Falcon. In: Newton I, Chancellor RD (eds) Conservation studies on raptors. ICBP Technical publication no. 5. International Centre for Birds of Prey (ICBP), Cambridge, pp 147–152Google Scholar
  43. Ristow D, Wink C, Wink M (1979) Site tenacity and pair bond of the Eleonora’s Falcon. Il-Merill 20:16–18Google Scholar
  44. Ristow D, Wink C, Wink M (1982) Biology of Eleonora’s Falcon (Falco eleonorae): 1. Individual and social defense behavior. Raptor Res 16:65–70Google Scholar
  45. Rosén M, Hedenström A, Badami A, Spina F, Åkesson S (1999) Hunting flight behaviour of the Eleonora’s Falcon Falco eleonorae. J Avian Biol 30:342–350CrossRefGoogle Scholar
  46. Segurado P, Araújo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31:1555–1568CrossRefGoogle Scholar
  47. SPSS Inc. (2009) SPSS Base 18.0 for Windows user’s guide. SPSS Inc., ChicagoGoogle Scholar
  48. Urios G, Martínez-Abraín A (2006) The study of nest-site preferences in Eleonora’s Falcon through digital terrain models on a western Mediterranean island. J Ornithol 147:13–23CrossRefGoogle Scholar
  49. Walter H (1979) Eleonora’s Falcon: adaptations to prey and habitat in a social raptor. University of Chicago Press, ChicagoGoogle Scholar
  50. Wink M, Wink C, Ristow D (1982) Biologie des Eleonorenflaken (Falco eleonorae): 10. Der Einfluß der Horstlage auf den Bruterfolg. J Ornithol 123:401–408CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2011

Authors and Affiliations

  • Christina Kassara
    • 1
  • Anastasios Dimalexis
    • 2
  • Jakob Fric
    • 2
  • Georgios Karris
    • 3
  • Christos Barboutis
    • 4
  • Spyros Sfenthourakis
    • 1
  1. 1.Section of Animal Biology, Department of BiologyUniversity of PatrasPatrasGreece
  2. 2.Hellenic Ornithological SocietyAthensGreece
  3. 3.Department of Environmental Technology and EcologyTechnological Educational Institution (TEI) of the Ionian IslandsZakynthosGreece
  4. 4.Department of Biology and Natural History Museum of CreteUniversity of CreteHerakleionGreece

Personalised recommendations